جهت آشنایی با خواص و ویژگی های : افزودنی های تبدیل گچ به سیمان و

افزودنی های تولید چسب هبلکس، چسب بتن سی ال سی ، چسب دیوار گچی و ... کلیک فرمایید

افزودنی های تبدیل گچ به سیمان
افزودنی های ساخت انواع چسب پایه سیمانی و گچی برای دیوار های هبلکس ، بتن سبک ، بلوک و دیوار گچی
فروش تبدیل کیا ترنم
تاريخ : چهارشنبه بیستم دی 1391 | 13:33 | نویسنده : زهرا - دانلود رایگان
افزودنی های جادویی تبدیل گچ به سیمان

خیلی ها می گویند امکان ندارد …

افزودنی های تبدیل گچ به سیمان


بهترین مهندسین شیمی و عمران جمع شده اند تا جدیدترین افزودنی های صنعت ساختمان را تولید نمایند

امروزه به دلیل مزایای زیاد سیمان این مصالح ساختمانی تبدیل به یکی از پر مصرف ترین مصالح صنعت ساختمان گردیده است. مقاومت بالا، خواص ضد آبی و کارائی سیمان توانسته بر قیمت بالای آن ارجحیت پیدا کند و در مقابل قیمت بسیار ارزان گچ نتوانسته بر معایب آن غالب شود

ما توانسته ایم افزودنی هایی را برای گچ تولید کنیم که خواص گچ را بهبود داده و به خواص  سیمان نزدیک کند.

علاوه بر آن برای بهبود خواص سیمان نیز افزودنی هایی را تولید نموده ایم. همچنین افزودنی هایی را تولید نموده ایم که امکان ساخت انواع چسب پایه گچی و پایه سیمانی با بهترین کیفیت و کمترین هزینه را جهت اجرای دیوار های هبلکس، بتن سبک CLC ، دیوارگچی و … را می دهد.

***جهت آشنایی با خواص، ویژگی ها، کاربرد و سفارش این افزودنی ها روی لینک محصولات ما کلیک بفرمایید.

** جهت کسب اطلاعات بیشتر یا سفارش این افزودنی با ما تماس بگیرید.

شعار ما : یا کیفیت عالی افزودنی های ما را تجربه کنید یا پولتان را پس بگیرید

این افزودنی ها تولید شرکت مهندسین مشاور کیا عمران با شماره ثبت ۱۶۹۳ – شناسه ملی ۱۴۰۰۰۰۱۲۳۹۷ می باشد.


برچسب‌ها: افزودنی گچ, افزودنی سیمان, ضد آب گچ, دیرگیر گچ, تبدیل گچ به سیمان

تاريخ : جمعه بیست و یکم شهریور 1393 | 11:42 | نویسنده : زهرا - دانلود رایگان
وظایف بازرسان پیچ و مهره

وظایف بازرسان پیچ و مهره

مطالعه‌ی دقیق مباحث اجرایی مشخصات فنی، نقشه‌های قرارداد، نقشه‌های کارگاهی ساخت و نیز نصبی پروژه.

مطالعه‌ی همه‌ی «گواهی‌نامه‌های مطابقت مواد» که از سوی کارخانه‌ی سازنده صادر شده است و حصول اطمینان از تطابق ویژگی‌های مواد قطعات با الزامات پروژه.

تایید شناسایی مواد پیچ‌ومهره‌ها.

تایید وجود شرایط مناسب و تحت کنترل جهت انبار قطعات پیچ و مهره .

تایید وجود دستورکارهای مصوب نصب پیچ‌ومهره و استفاده از این دستورکارها در روند عملیات اجرایی.

تایید صلاحیت همه‌ی پرسنل نصاب پیچ‌ومهره.

حصول اطمینان از آگاهی تمام نیروهای کاری از دستورکار نصب پیچ و مهره.

مشاهده‌ی آزمایش پیش از نصب که در آغاز کار و به ازای هر محموله انجام می‌شود.

در روش استفاده از آچار کالیبره، عملیات کالیبراسیون آچار در ابتدای هر شیفت کاری بررسی و بازرسی شود.

کنترل کفایت وضعیت اتصال اعم از وضعیت ابعاد سوراخ‌ها، عدم وجود وضعیت نامناسب در سوراخ‌هایی که گشاد شده و یا برقو زده شده‌اند.

در اتصالات اصطکاکی، کنترل مناسب بودن وضعیت سطوح ورق‌های اتصالی که بر روی هم قرار می‌گیرند.

کنترل سفت‌شدن نخستین همه‌ی پیچ‌ها، پیش از اعمال نیروی پیش‌تنیدگی.

در اتصالاتی که باید پیش‌تنیده شوند، درقالب یک برنامه‌ی زمان‌بندی مناسب عملیات پیش‌تنیدگی کنترل شود تا از درستی انجام آن اطمینان حاصل شود.

هرگونه اختلاف نظر در خصوص دستیابی به میزان پیش‌تنیدگی مورد نظر باید بلافاصله حل‌وفصل شود.

گزارش کاملی در خصوص اتصالات مشاهده و بازرسی شده که مورد قبول قرار گرفته‌اند تهیه شود. این گزارش باید طبق برنامه و در زمان‌های مربوطه و از پیش مشخص به دستگاه مربوطه تحویل شود.

 منبع:civilgete . c o m


برچسب‌ها: بازرسان پیچ و مهره, بازرسان, پیچ و مهره

تاريخ : جمعه بیست و یکم شهریور 1393 | 11:42 | نویسنده : زهرا - دانلود رایگان
روش‌های پیش‌تنیدن در پیچ‌های اتصالات فولادی

روش‌های پیش‌تنیدن در پیچ‌های اتصالات فولادی

استانداردهای گوناگون هر کدام روش‌هایی را برای پیش‌تنیدگی پیچ‌ها معرفی کرده و به رسمیت شناخته‌اند. یکی از معتبرترین استانداردها در این زمینه، استاندارد کمیته‌ی RCSC که از کمیته‌های زیرمجموعه‌ی AISC می‌باشد بوده و چهار روش کاربردی را برای پیش‌تنیدگی در پیچ معرفی نموده است:

استفاده از آچار کالیبره :

 در این روش به‌طور روزانه از هر بچ تعداد سه نمونه‌ی پیچ، مهره و واشر انتخاب شده و کالیبره می‌شود. به منظور کالیبراسیون نمونه‌ها از یک دستگاه «اسکید مور- ویلهلم» استفاده می‌شود. و به کمک ترک-متر میزان گشتاور مشخص بر اساس مشخصات نقشه‌ها یا جدول4.4.10  آیین‌نامه-ی مبحث دهم تنظیم شده و برای همه‌ی پیچ‌های مشابه کاربردی در همان روز به کار گرفته می‌شود. نکته‌ی بسیار مهم در عدم برابری میزان پیش‌تنیدگی بین پیچ-ها با مقدار یک گشتاور  اعمال شده‌ی ثابت است. یعنی وقتی برای سه نمونه پیچ یک میزان گشتاور اعمال شود، مقدار نیروی پیش‌تنیدگی نمایش داده شده در دستگاه «اسکید مور- ویلهلم» متفاوت است. بررسی‌ها نشان داده که از میزان گشتاور اعمال شده، حدود هشتاد درصد صرف غلبه بر اصطکاک موجود بین رزوه‌ها و نیز اصطکاک بین سطح مهره بر روی واشر شده و تنها کمتر از بیست درصد گشتاور اعمال شده جهت پیش‌تنیدگی به کار می‌رود. در نتیجه آیین‌نامه کالیبراسیون با این روش را با توجه به دما، شرایط محیطی و مسایلی از این دست برای هر بچ به صورت روزانه به رسمیت می‌شناسد.

استفاده از واشرهای ویژه (DTI Washers) :

 این واشر‌ها دارای برآمدگی-هایی‌ست که برای هر سایز پیچ کالیبره شده است. روش کار به این صورت است که آن را درون اتصال قرار داده و پیچ سفت شده؛ سپس با اعمال نیروی بیشتر تا حد پیش‌تنیدگی برای آن سایز، برآمدگی‌های روی واشر تخت می‌شود. پس از آن با چشم و یا با استفاده از فیلر کنترل انجام می‌گیرد که تخت شدگی کامل واشر نشانه‌ی رسیدن به میزان پیش‌تنیدگی لازم برای پیچ می‌باشد. در این روش نیازی به استفاده از ترک‌متر نمی‌باشد. البته نوع دیگری از این واشرها موجود است که به جای برآمدگی دارای یک نوع کپسول سیلیکونی رنگی‌ست که با رسیدن به پیش‌تنیدگی لازم، کپسول سیلیکونی ترکیده و رنگی قرمز از خود تراوش می‌کند که به راحتی و با چشم، می‌توان پیچ‌های پیش‌تنیده را از غیرپیش‌تنیده تشخیص داد. به منظور اطمینان از کیفیت واشرهای DTI، باید همه-ی الزامات استاندارد ASTM F959M در ساخت، تولید و بازرسی این قطعات به کار گرفته شده باشد.

استفاده از بولت‌های ویژه (Twist-off-Bolt) :

 این روش که گاهی به آن TC Bolt نیز می‌گویند، بر اساس میزان گشتاور لازم برای جداشدن قسمت اضافه-ی سرپیچ کار می‌کند. این نوع پیچ‌ها دارا ی یک قسمت اضافی پایینی بوده که با سفت شدن کامل پیچ به وسیله‌ی آچارهای ویژه‌ی خود، مهره در جهت عقربه-های ساعت چرخانده شده، و بخش اضافی را در خلاف حرکت عقربه‌های ساعت می‌چرخاند، که این باعث بریده شدن قسمت اضافی پایینی پیچ شده که نشانه‌ی پیش‌تنیدگی پیچ می‌باشد. این روش بسیار دقیق اما غیرکاربردی‌ست. چون نیاز به فضای کافی برای قرارگیری آچار مخصوص داشته و همچنین برای سفت کردن پیچ تنها باید از آچارهای ویژه استفاده نمود.

استفاده از چرخش مهره :

 در این روش ابتدا پیچ‌ها را تا اندازه‌ای که قابل سفت‌شدن می‌باشد، بسته و سپس، روی بدنه‌ی مهره و میله‌ی پیچ را علامت-گزاری کرده، آن‌گاه به میزان دوری که بر اساس طول و قطر در آیین‌نامه مشخص شده، چرخش اضافه بر مهره اعمال می‌شود. طبق جدول 2.4.10 مبحث دهم چرخش لازم برای پیش‌تنیده کردن پیچ‌ها آورده شده که تنها برای سطوح بدون شیب کاربرد دارد. برای همه‌ی سطوح می توان از جدول زیر استفاده نمود:

 در اتصالات پیچی سوراخ‌ها بر روی خط مستقیم در جهت نیرو و  یا عمود بر آن در یک یا چند ردیف تعبیه می‌گردد. چنان‌چه تعداد سوراخ‌ها زیاد باشد می‌توان شکل قرارگیری سوراخ‌ها را به صورت زیگراگ اجرا نمود. فاصله-های بین سوراخ‌ها به صورت یکنواخت و هماهنگ با قطر سوراخ انتخاب می-شود.


برچسب‌ها: اتصالات فولادی, فولاد, پیش‌تنیدن, پیچ‌

تاريخ : جمعه بیست و یکم شهریور 1393 | 11:38 | نویسنده : زهرا - دانلود رایگان
طویل کردن ستونها

طویل کردن ستونها

 سازه های فلزی را اغلب در چندین طبقه احداث می کنند ، طول پروفیلها برای ساخت ستون محدود است . با در نظر گرفتن بار وارده ودهانه بین ستونها ونحوه قرار گرفتن ستونهای کناری ، مقاطع مختلفی برای ساخت ستونها بدست می آید . ممکن است در هر طبقه ، ابعاد مقطع ستون با طبقه دیگر تفاوت داشته باشد ، بنابراین باید اتصال مقاطع با ابعاد مختلف برای طویل کردن با دقت زیادی انجام شود .محل مناسب برای وصله ستونها به هنگام طویل کردن آنها حداقل در ارتفاع 45 تا 60 سانتیمتر بالاتر از کف هر طبقه یا 6/1 ارتفاع طبقه می باشد .این ارتفاع اندازه حداقلی است که از نظر دسترسی به محل اجرای جوش ونصب اتصالات مورد نیاز برای ادامه ستون یا اتصال بادبندی لازم است .

 نحوه طویل کردن ستونها :

 ابتدا سطح تماس دوستون را بخوبی گونیا می کنند وبا سنگ زدن صاف می نمایند تا کاملا" در تماس با یکدیگر یا صفحه وصله قرار گیرد . درصورتی که پروفیل دوستون یکسان نباشد ، باید اختلاف نمره دوستون را با گذاردن صفحات لقمه (هم سو کننده) بر ستون فوقانی را پر نمود . سپس صفحه وصله را نصب کرد وجوش لازم را انجام داد . اگر ابعاد مقطع دو نیمرخ که به یکدیگر متصل می شوند، تفاوت زیاد داشته باشد ، بطوری که قسمت بزرگی از سطح آن دو در تماس با یکدیگر قرار نگیرد ، در این صورت باید یک صفحه تقسیم فشار افقی بین دونیمرخ به کار برد . این صفحه معمولا" باید ضخیم انتخاب شود تا بتواند بدون تغییر شکل زیاد ، عمل تقسیم فشار را انجام دهد .کلیه ابعاد وضخامت صفحه ومقدار جوش لازم را باید طبق محاسبه وبر اساس نقشه های اجرایی انجام داد .


برچسب‌ها: ستون, ستونها

تاريخ : شنبه هفدهم خرداد 1393 | 0:20 | نویسنده : زهرا - دانلود رایگان
مزایای سازه های بتنی برای ساخت سازه بتنی

مزایای سازه های بتنی برای ساخت سازه بتنی

 

۱- ماده اصلی بتن که شن و ماسه می‌باشد ارزان و قابل دسترسی است.

 ۲- سازه‌های بتنی که مطابق با اصول آیین نامه‌ای طراحی و اجرا شده اند، در مقابل شرایط محیطی سخت، مقاومتر از سازه‌های ساخته شده با مصالح دیگر هستند.

 ۳- به علت قابلیت شکل پذیری بالای بتن، امکان ساخت انواع سازه‌های بتنی نظیر پل، ستون و ... به اشکال مختلف میسر است

 ۴- سازه‌های بتنی در مقابل حرارت زیاد ناشی از آتش سوزی بسیار مقاوم اند. آزمایشات نشان داده اند که در صورت ایجاد حرارتی معادل ۱۰۰۰ درجه سانتی گراد برای یک نمونه بتن آرمه، حداقل یک ساعت طول می‌کشد تا دمای فولاد داخل بتن، که با یک لایه بتنی با ضخامت ۲٫۵ سانتی متر پوشیده شده است، به ۵۰۰ درجه سانتی گراد برسد.

 

روش های طراحی سازه‌های بتن آرمه

 به طور کلی هدف از طراحی یک سازه، تامین ایمنی در مقابل فروریختگی و تضمین عملکرد مناسب در زمان بهره برداری است. چنانچه مقاومت واقعی یک سازه بطور دقیق قابل پیش بینی بود و در صورتی که بارهای وارد بر سازه و اثرات داخلی آنها نیز با همان دقت قابل تعیین بودند، تامین ایمنی تنها با ایجاد ظرفیت باربری به میزان جزئی بیش از مقدار بارهای وارده ممکن می گشت. لیکن عوامل نامشخص و خطاهای احتمالی متعددی در آنالیز، طراحی و ساخت سازه‌ها وجود دارند که یک حاشیه ایمنی را در طراحی سازه‌ها طلب می‌کنند. مهمترین ریشه‌ها و منابع این خطاها عبارتند از:

 الف: بارهایی که در عمل به سازه وارد می‌شوند و همچنین توزیع واقعی آنها ممکن است با آنچه در بارگذاری سازه فرض شده است متفاوت باشند.

 ب: رفتار واقعی سازه ممکن است با رفتار تئوریک سازه، که بر اساس آن نیروهای داخلی اعضا محاسبه می‌شوند، تفاوت داشته باشد.

 ج: مقاومت واقعی مصالح به کار رفته در ساخت سازه ممکن است متفاوت از مقادیر فرض شده در محاسبات باشد.

 د: ابعاد قطعات و محل واقعی میلگرد ها ممکن است دقیقا مطابق آنچه طراح در محاسبات خود فرض کرده نباشد.

 بنابراین، انتخاب یک حاشیه ایمنی مناسب امر بسیار دشواری است که نحوه منظور نمودن آن، به صورت یکی از مشخصه‌های اساسی روش های طراحی در آمده است. به طور کلی طراحی سازه‌های بتن آرمه به سه روش زیر صورت می‌گیرد

 ۱: تنش مجاز

 ۲: مقاومت نهایی

 ۳: روش طراحی بر مبنای حالات حدی

 

روش تنش مجاز

 این روش که قبلا روش تنش بهره برداری یا روش تنش بار سرویس نامیده می‌شد، اولین روشی است که بصورت مدون برای طراحی سازه‌های بتن آرمه بکارگرفته شد. در این روش یک عضو سازه‌ای به نحوی طراحی می‌شود که تنش های ناشی از اثر بارهای بهره برداری (یا سرویس)، که به کمک تئوری های خطی مکانیک جامدات محاسبه می‌شوند، از مقادیر مجاز تنش ها تجاوز نکنند. منظور از بارهای بهره برداری یا سرویس بارهایی نظیر: بار زنده، بار مرده، بار برف و بار زلزله هستند. این بارها توسط آیین نامه‌های بارگذاری، مانند آیین نامه ۵۱۹ موسسه استاندارد و تحقیقات صنعتی ایران تعیین می‌شوند. در این روش منظور از تنش مجاز تنشی است که از تقسیم تنش حدی ماده، نظیر مقاومت فشاری برای بتن و مقاومت تسلیم برای فولاد، بر ضریب بزرگتر از واحد، به نام ضریب اطمینان به دست می‌آید. تنش های مجاز مصالح توسط آیین نامه‌های محاسباتی تعیین می‌شوند.

 

بدین ترتیب مراحل این روش بطور خلاصه به ترتیب زیر هستند:

 ۱: تعیین بارهای وارد بر سازه

 ۲: آنالیز سازه و تعیین تنش ها در مقاطع مختلف به کمک تئوری های کلاسیک اجسام الاستیک

 ۳: تعیین تنش های مجاز با استفاده از یک آیین نامه محاسباتی

 ۴: طراحی نهایی مقطع با این محدودیت که در هیچ نقطه‌ای از سازه تنش های ایجاد شده از تنش های مجاز تجاوز نکنند.

 این روش به دلیل سادگی و سهولت کاربرد تا چندی قبل به عنوان قابل استفاده ترین روش طراحی سازه‌های بتن آرمه مطرح بود. لیکن نقاط ضعف این روش استفاده از آن را محدود کرده است. مهمترین این نقاط ضعف عبارتند از:

 الف: در این روش ایمنی به کمک تنها یک ضریب (ضریب اطمینان) و در یک مرحله منظور می‌شود، از آنجا که عواملی که لزوم تامین یک حاشیه ایمنی را ایجاب می‌کنند دارای ریشه‌ها و شدت های متفاوت هستند، در نظر گرفتن آنها تنها با کمک یک ضریب غیر منطقی است.

 ب: بتن ماده‌ای است که تنها تا تنش های معادل نصف مقاومت فشاری آن به صورت الاستیک و خطی عمل می‌کند. بنابراین با بکار بردن درصدی از مقاومت فشاری بتن در محاسبات نمی‌توان اطلاعی از ضریب اطمینان کلی سازه در مقابل فروریختگی به دست آورد.

 ج: به کار بردن این روش در طراحی بعضی مقاطع با اشکالات تئوریک مواجه است. به عنوان مثال در مقاطع خمشی تنش واقعی فولاد غالبا کمتر از مقداری است که با این روش محاسبه می‌شود.

 

تا سال ۱۹۵۶ میلادی روش تنش های مجاز مبنای محاسبات در آیین نامه ACI بود. این روش از سال ۱۹۷۷ تنها در قسمت ضمائم آیین نامه و تحت عنوان روش دیگر طراحی جا داده شد.

 

روش مقاومت نهایی

 روش مقاومت نهایی که در آیین نامه ACI به نام روش طراحی بر مبنای مقاومت موسوم است، حاصل مطالعات گسترده روی رفتار غیر خطی بتن و تحلیل دقیق مسئله ایمنی در سازه‌های بتن آرمه می‌باشد. روند طراحی در این روش را می‌توان به صورت زیر خلاصه نمود:

 

۱: باربهره برداری به وسیله ضریبی موسوم به ضریب بار افزایش داده می‌شود، بار حاصله را اصطلاحا بار ضریبدار یا بار نهایی می نامند.

 ۲: بارهای ضریبدار بر سازه اعمال می‌شوند و به کمک روش های خطی آنالیز سازه ها، نیروی داخلی مقاطع محاسبه می‌شود. به این نیروی داخلی اصطلاحا مقاومت لازم گفته می‌شود. مقاومت لازم در یک مقطع شامل: مقاومت خمشی لازم، مقاومت برشی لازم، مقاومت پیچشی لازم و مقاومت بار محوری لازم است.

 ۳: برای هر مقطع، مقاومت طراحی آن از حاصلضرب مقاومت اسمی در ضریبی کوچکتر از واحد به نام ضریب کاهش مقاومت به دست می‌آید. مقاومت اسمی، حداکثر مقاومتی است که مقطع قبل از گسیختگی از خود نشان می‌دهد. مقاومت اسمی یک مقطع مشتمل است از: مقاومت خمشی اسمی، مقاومت برشی اسمی، مقاومت پیچشی اسمی و مقاومت بار محوری اسمی.

 ۴: طراحی مقطع به نحوی که در آن مقاومت لازم از مقاومت طراحی کمتر باشد.

 روش طراحی بر مبنای مقاومت، امروزه اساس کار طراحی سازه‌های بتن آرمه می‌باشد

 

روش طراحی بر مبنای حالات حدی

 به منظور تکامل روش مقاومت نهایی، به ویژه از نظر نحوه منظور نمودن ایمنی، روش طراحی بر مبتای حالات حدی ابداع گردید. این روش هم اکنون مبنای طراحی در تعدادی از آیین نامه‌های اروپایی است، با این حال این روش هنوز نتوانسته است جای روش مقاومت نهایی را در آیین نامه ACI بگیرد. این روش از نظر اصول محاسبات مربوط به مقاومت، مشابه روش طراحی بر مبنای مقاومت است و تفاوت عمده آن با روش قبل، در نحوه ارزیابی منطقی تر ظرفیت باربری و احتمال ایمنی اعضا می‌باشد. در این روش نیاز های طراحی با مشخص کردن حالات حدی تعیین می‌شوند. منظور از حالات حدی شرایطی است که در آنها سازه مورد نظر خواسته‌های طرح را تامین نمی‌کند. طراحی سازه با توجه به سه حالت حدی زیر صورت می‌گیرد

 

۱: حالت حدی نهایی، که مربوط به ظرفیت باربری می‌شود.

 ۲: حالت حدی تغییر شکل (مانند تغییر مکان و ارتعاش اعضا)


برچسب‌ها: مزایای سازه های بتنی, ساخت سازه بتنی, بتن, بتنی

تاريخ : شنبه هفدهم خرداد 1393 | 0:20 | نویسنده : زهرا - دانلود رایگان
نکات مربوط به پشت بندها در بتن ریزی تیر و ستون سازه های بتنی

نکات مربوط به پشت بندها در بتن ریزی تیر و ستون سازه های بتنی

فشار ناشی از وزن بتن تازه و سر بارهای زمان اجرای بتن ریزی  بستگی دارد. هر چه مقدار فشار بتن بیشتر باشد به پشت بند با ابعاد بزرگتر و فواصل نصب کمتری نیاز است. تعداد و ابعاد پشت بندهای لازم برای یک صفحه قالب ، با توجه به ابعاد قالب و نیرهای وارد بر آن ، تعیین می شود که در هر صورت عرض پشت بند هیچ گاه نباید از 5 سانتی متر کمتر باشد. عرض مناسب پشت بند 7 تا 10 سانتی متر است و فاصله پشت بند ها از هم حداکثر 60 سانتی متر است.                                                                                          

 

- در بتن ریزی های سنگین ، پشت بندها از لاپه یا چوب های چار تراش می باشند.

  ( لاپه: چوب گرد نصف شده است که در جهت طولی چوب است ).                                                                                                                

 - بهتر است سمت راست تخته ی (پیر) پشت بند روی سطح خارجی صفحه قالب قرار می گیرد.                                     

 - پشت بند های صفحات متفاوت یک قالب، به منظور اتصال بهت به یکدیگر به گونه ای کوبیده می شوند که حتی الامکان در یک صفحه قرار گیرند.

 ج) طویل کردن تخته ها برای ساخت یک صفحه ی قالب

 در صورت عدم کفایت طول تخته های موجود برای ساخت صفحه ی قالب به صورت یک تکه ، لازم است سعی شود :

 اولاً: محل طویل کردن تخته ها حتی الامقدور در محل اتصال پشت بندها قرار گیرند.

 ثانیاً : درزهای اتصال تخته ها ، بطور متناوب ، بر روی پشت بندهای مختلف قرار گیرند.


برچسب‌ها: پشت بندها, بتن ریزی, تیر و ستون, سازه های بتنی, بتن

تاريخ : شنبه هفدهم خرداد 1393 | 0:19 | نویسنده : زهرا - دانلود رایگان
عملیات مکانیکی و الکتریکی برای ساختمان اداری

ساختمان , شرح خلاصه عملیات مکانیکی و الکتریکی برای ساختمان اداری

ـ تأسیسات مکانیکی

 ـ سیستم تهویه در ساختمان ها بوسیله کولرهای اپسیلت از نوع OGENERAL باشد . جهت ارتباط رفت و برگشت هوای ساختمان در اتاقها ، پادری در روی دربها و جهت تخلیه هوا پادری در ورودی درب سرویسها نصب و هوای اضافی از طریق سرویسها و آبدارخانه های ساختمان تخلیه خواهد شد .

 

ـ جهت تأمین آبگرم مصرفی ساختمان بدلیل کمی حجم آن و نوع ساختمان بصورت موضعی در مجاورت دستشوئی ها با نصب آبگرمکن برقی دیواری اقدام خواهد شد . کلیه لوله کشی های آبگرم و سرد مصرفی ساختمان از نوع لوله سبز بصورت نصب توکار خواهد بود .

 

ـ در رابطه با دفع فاضلاب ، با لوله کشی های لازم لوله پلی اتیلن فشار قوی به خارج از ساختمان هدایت و به امکانات موجود ارتباط خواهد یافت . کلیه سیستم فاضلاب سرویسها مجهز به لوله کشی ونت خواهد بود .

 

ـ سیستم آتش نشانی ساختمان شامل جعبه آتش نشانی با تجهیزات مربوطه بوده که در طبقات و در محلهای لازم نصب شده و کپسولهای پودر و گاز co2 آتش نشانی به تعداد کافی در محلهای لازم در نظر گرفته خواهد شد .

 

- تأسیسات الکتریکی

 در الکتریکی ساختمان اداری سیستمهای زیر منظور شده اند : روشنائی ، توزیع برق ( پریزها ) ، شبکه تلفن ، شبکه رایانه ، توزیع برق اضطراری ( UPS ) ، سیستم اعلام حریق و بالاخره سیستم اتصال زمین .

 

در هر کدام از بخش های فوق از استانداردهای معتبر جهانی و همچنین استانداردهای ایران و مقررات ملی ساختمان استفاده گردیده و توصیه های مربوط رعایت شده است که اجراء آنها الزامی است .

 

در ساختمان اداری جهت روشنائی اطاق ها از چراغهای فلورسنت لووردار رفلکس آنادایز شده و در راهروها و سرسرا و هال ورودی از چراغهای فلورسنت با لامپ کمپاکت استفاده شده است .

 

توزیع برق در ساختمان اداری با توجه به مبلمان و رعایت انعطاف پذیری طبق نقشه آن انجام شده است .

 

لوله های استفاده شده در کلیه سیستم ها در دیوارها و در سقف ها ( بر حسب مقررات ملی ساختمان ) از نوع گالوانیزه مخصوص برق پیش بینی شده است . انتخاب کابل کشی و سیم کشی ها با توجه به شرایط اقلیمی منطقه انجام شده و رعایت درجه حرارت و همجواری کابلها گردیده است .

 

جهت عدم تراکم لوله کشی ها برای هر بال از ساختمان اداری یک تابلو مستقل در نظر گرفته شده که نوع ورق آنهاحتماً بایستی از نوع گالوانیزه و ضخامت حداقل ( 5/1 ) و برای تابلوهای اصلی دیواری 5/2 میلیمتر باید منظور شود .

 

لوازم داخلی تابلو حتماً باید ساخت کشورهای اروپا و منطبق با استانداردهای بین المللی باشند .


برچسب‌ها: عملیات مکانیکی و الکتریکی, ساختمان اداری

تاريخ : شنبه هفدهم خرداد 1393 | 0:19 | نویسنده : زهرا - دانلود رایگان
سد سازی قبل و بعد از هخامنشیان

سد سازی قبل و بعد از هخامنشیان

سد سازي يا بند سازي از فعاليت هاي مهندسي به شمار مي رود كه شرايط تاريخي و جغرافيايي خاص مناطق در پيدايش ،‌شكل گيري و گسترش آن سهم به سزايي دارند. در گذشته و در هر منطقه خاص جغرافيايي بنابر ضرورت يا نياز ساكنين آن جا نسبت به ايجاد سد ،‌ بند يا آبگير اقدام مي كرده اند تا نيازهاي خود در زمينه آبياري و آبرساني را مرتفع سازند. در مناطقي نيز به خاطر پايين بودن سطح آب‌هاي رودخانه ها يا نياز جهت تغيير مسير رود ، سد سازي انجام مي گرفته تا بتوانند سطح آب را بالا آورده و براي نيازهاي كشاورزي و عمراني از آن استفاده كنند.
در ايران نيز به جهت كمبود آب،‌شرايط اقليمي خاص و نيازهاي روزمره آب ماده اي بسيار ارزشمند محسوب مي شده كه اين امر را علاوه بر بندسازي ، سد سازي و آثار به جا مانده مي توان در فرهنگ ايراني و ارزشي كه براي آب قايل مي شدند و حافظه تاريخي مردم ايران به وضوح مشاهده و مطالعه كرد.
در سرزمين هاي ايران و مصر كه از قديم در معرض سيلاب و طغيان رودخانه ها قرار داشتند‌،ساخت بندهاي متفاوت در طول مسير رودخانه ها و يا مناطق سيل خيز به جلوگيري از خسارات اين گونه طغيان ها كمك فراواني مي كرد.
تاريخ سد سازي در ايران‌،مصر و بين النهرين ( ميان رودان) قدمتي بسيار طولاني دارد و هنوز هم مي توان نشانه هايي از آنها را در اين سرزمين ها يافت. به طور كلي سدسازي و نيز لايروبي و مرمت آنها از دير باز در ايران ديگر سرزمين ها ،‌مانند ساير كارهاي عام المنفعه و پروژه هاي بزرگ معمولا به دست حكومت ها و پادشاهاني كه به امور آباداني و آبادي علاقه بيشتري داشتند انجام مي گرفته است و در اين ميان رونق اقتصادي و پيشرفت آبادي ها و شهرهاي مرتبط با سيستم هاي آبياري و آبرساني نيز بستگي بسيار زيادي با مقوله سد و سد سازي و اهميت حكمرانان به اين مسايل داشته است.

سد سازي از دوره هخامنشيان تا قبل از اسلام
پادشاهان هخامنشي به واسطه نياز جغرافيايي كشور ايران و علاقه اي كه در گسترش و آباداني سرزمين تحت فرمانروايي از خود نشان مي دادند و در زمان امپراتوري خود سدها و بندهاي زيادي در بخش هاي جنوب غربي و جنوبي ايران ساختند. بسياري از سيستم هاي آبرساني و آبياري كه تا سال هاي متمادي نيز در ايران از آنها استفاده شد مرهون تلاش مهندسان و صنعتگران ايراني است كه در زمان هاي بسيار دور تلاش نمودند تا نيازها و كمبودها را در زمينه هاي عمراني و آبادي بر طرف نمايند و آثار و شواهد آن را نيز مي توان در نقاط مختلف ايران درك نمود. علاوه بر آن بسياري از آثار به جا مانده از اين دوران ها در سرزمين هاي تابعه حكومت هاي ايران باستان نيز قابل مشاهده است.
يكي از رودخانه هايي كه از قديم به رودخانه اروند مي پيوسته است «‌دياله » بوده است كه بنا به دستور كوروش بزرگ سدي براي آبياري ،‌از خاك و چوب بر روي اين رودخانه بسته شده بود كه شبكه كانال هاي آبرساني را تغذيه مي كرد. همچنين در زمان هخامنشيان اولين كوشش ها جهت سد سازي بر روي اروند و فرات به عمل آمد. از مشخصات اين رودخانه ها آن بود كه سطح فرات بالاتر از دجله قرار داشت و نيز در زمان حكومت بابليان بر بين النهرين تمايل رود فرات نسبت به شرق بيشتر از امروز بوده و اين رود تنها داراي يك مجرا بوده است. انشعاب فرات به دو مجرا بين سال هاي 600 ق.م تا 100 ق. م اتفاق افتاده است . چنان كه پيداست هخامنشيان سدهايي بر روي رودخانه هاي فرات و اروند ساختند و گام هايي ديگر در گسترش شبكه كانال هاي آبياري برداشتند. بدون شك هنگامي كه اسكندر مقدوني در حدود سال 400 ق. م به آنجا ها رسيد آن سدها ساخته شده و برپا بوده اند. استرابو جغرافي دان سده اول ميلادي يونان خبر از ويراني آنها به دست اسكندر مقدوني مي دهد. ولي واقعيت اين كه اسكندر اين سدها را ويران كرده باشد كاملا معلوم نيست چون برخي نيز گفته اند كه اسكندر آنها را خراب نكرده است و حتي به حفر كانال ها و نظارت بر اين سدها به طور مرتب مشغول بوده است. به هر حال آنچه مسلم است آبياري با بهره وري از بند سازي در فرات و اروند پيرامون سده چهارم پيش از ميلاد كاملا روا بوده است و اين سيستم هاي سد بندي و آبياري بعدها در زمان ساسانيان به حد بالاي گسترش خود رسيد.
علاوه بر بندها و آبگيرهايي كه در زمان هخامنشيان بر روي رودخانه هاي اروند و فرات ساخته شد،‌در آن زمان بر روي رودخانه «‌كر » kur در فارس نيز بندهايي براي آبياري زمين هاي پيرامون تخت جمشيد ايجاد شد. با اين كه آثاري از تمامي سدهاي ساخته شده در زمان هخامنشي ها در دست نيست، ولي برخي از بندها كه تا به امروز بر روي آن رودخانه بر جاي مانده اند داراي پايه هاي هخامنشي هستند. از جمله اين سدها « بند ناصري » است كه در 48 كيلومتري شمال غربي تخت جمشيد واقع شده است.

ابن بلخي (سده پنجم‌) سد ناصري را چنين توصيف مي كند:« در اين قسمت رودخانه در زمان هاي قديم سدي ساخته شده بود كه آب كافي را براي آبياري زمين ها تأمين مي كرده است ،‌اما در روزگاران هرج مرج كه اعراب به سرزمين ايران تاختند اين سد رو به خرابي نهاد و در تمام حوزه هاي رامجرا ( را مجرد‌) ديگر كشاورزي انجام نشد. ..»
سد ديگر بند فيض آباد نام دارد كه در حدود 48 كيلومتري شمال تخت جمشيد قرار گرفته است چنان كه گفته شده است يكي از سه بندي كه بر روي رود كر ساخته شده بوده 25 متر درازا و 25 متر بلندا داشته است.
در نزديكي شهرك «‌كوار » در جنوب شيراز سد هخامنشي ديگري به نام «بند بهمن» بر روي رودخانه « مند» بنا شده است. طول بند در حدود 100 متر و بلنداي آن حدود 25 متر مي باشد . بخش عمده اي از اين سد تا كنون از گل و لاي پر شده است.
در زمان ساسانيان و هنگام حكومت شاپور اول ، ارتش شكست خورده والرين رومي كه مركب از 70000 هفتاد هزار نفر مي شد به اسارت ايرانيان درآمد، شاپور از اين اسيران براي ساختن ساختمان هايي در ايران استفاده كرد. يكي از اين ساختمان ها «‌سد شادروان شوشتر» بر روي رودخانه كارون به شمار مي آيد . شوشتر كه در كناره شرقي كارون بر روي ساحل سنگي ساخته شده از زمان ساسانيان يكي از شهرهاي مهم بود. از زمان ايلاميان و دوران اوليه سلسله ساساني براي بالا بردن سطح آب در كارون تا به سطح شهر شوشتر سدي بر روي اين رود زده بودند.
ابن حوقل در صورة الارض راجع به شادروان شوشتر مي نويسد:
« سرزمين خوزستان در محلي مستوي و هموار قرار گرفته است و داراي آب هاي جاري است . بزرگترين رودهاي آن شوشتر است كه شاپور شادروان (سد معروف) را در دروازه شوشتر بر آن ساخت تا آب آن بالا آمد و به ثمر رسيد چه شوشتر در زمين مرتفعي قرار دارد.»
چنانكه پيداست سد اوليه بر روي كارون از لحاظ بالابردن سطح‌ آب چندان رضايت بخش نبود پس ايران رومي را براي رفع نقايص به كار گماشتند . احتمالا علاوه بر نيروي كارگري چندين مهندس نيز در سپاه روم بوده اند. گام نخست ،‌ايجاد رودخانه اي انحرافي « گرگر» بوده كه در هنگام ساختن سد آب كارون را هدايت مي كرده است. اين سد كه پس از تعميرهاي پشت سر هم تا كنون به جا مانده است «‌بند ميزان » نام دارد. سد داراي سرريزهايي است كه در هنگام بالا آمدن آب اضافي آن را تخليه مي كرده است. پهناي اين سد بين 10 تا 12متر است . ساختن اين سد از سه تا هفت سال طول كشيد و هنگامي كه ساختمان آن پايان يافت . ورودي رود گرگر با بند ديگري بسته شد كه امروزه « بندقيصر » ناميده مي شود . اين سد نيز كه تا كنون به جا مانده از تكه هاي بزرگ سنگي كه با بست هاي آهني به يكديگر محكم شده اند ساخته شده است. براي كنترل آب رودگرگر شش سرريز در آن سد ساخته شده بوده است . كانال گرگر پس از گذشتن نزديك به 30 كيلومتر به سوي جنوب دوباره به كارون مي پيوندد . نشانه هاي موجود چنين مي گويد كه براي آبياري نهرهاي ديگر نيز بر روي اين كانال زده شده بوده است.

به نظر مي رسد كه اين نخستين بار در تاريخ سد سازي است كه براي ساختن سدي بر روي رودخانه اي‌، براي آن كانال انحرافي ساخته اند و به ويژه از ديدگاه مهندسي با توجه به مقدار آب كارون اين خود پروژه با اهميتي به شمار مي رفته است. از كتاب تحفة العالم درباره ساختمان سد شادروان چنين آمده است:
«... ذوالاكتاف بعد از قلع و قمع اعراب به جنگ قيصر كمر بسته او را مغلوب و اسير كرد و به ايران قصد داشت و پس از مؤاخذه و مصادره به او فرمود كه اگر نجات خود را مي خواهي ممالكي را كه از قلمرو من خراب كرده اي بساز و چون شاپور را به عمارت و آبادي شوشتر رغبتي بوفور بود. قيصر التزام نمود كه ابتدا شادروان شوشتر را بسازد و چنان كند كه در حوالي شهر زرع مايي توانند كرد .قيصر چون بر جان خود ايمن گشت ... بفرمود تا مهندسين با فرهنگ ار روم ... و مهندسان بعد از آنكه ترازوي آب را بر‌آورد نمودند ديدند كه به سبب بسياري رودخانه و شدت جريان آب ساختن شادروان محال و زمين رودخانه را سنگ بست نمودن كه ديگر باره عميق نشود ممكن نيست مگر آن كه آب را اولا به طرف ديگر جاري نمايند تا آب از رودخانه منقطع گردد بعد از ساختن زمين رودخانه شادروان باز آب را به اين طرف سردهند و آن رخنه را ببندند...»
در شاهنامه فردوسي اشاره به اين موضوع شده كه سازنده و مهندس شادروان شوشتر شخصي به نام « برانوش » بوده است. ساختمان سد شادروان در زمان شاپور ساساني در 280 ميلادي پس از سه سال عمليات ساختماني به اتمام رسيد. در ساختمان اين سد براي پيوند و پا برجايي سنگ هاي گرانيت به كار برده اند.
بنا به شرح كتاب مجالس المومنين نوشته طبري عمود هاي آهنين كه در سرب قرار داشته نيز در آنجا به كار رفته بوده است.
يكي از بندهاي ديگري كه پس از سد شوشتر ساخته شد سد اهواز بوده است كه نشانه هاي آن هنوز هم به چشم مي خورد .درازاي اين سد بيش از 1000 هزار متر بوده و احتمالا 8 متر ضخامت(پهنا)‌داشته است . مقدسي جغرافي دان اسلامي سده سوم هجري درباره سد اهواز چنين مي گويد :« ميان اين دو بخش { اهواز را } پل «‌هندوان » كه با آجر ساخته شده پيوند مي دهد... روي اين نهر {مسرقان } دولاب‌‌هاي بسيار است كه فشار آب آنها را مي گرداند و «‌ناعور »‌خوانده مي شوند.

سپس آب در كاريزها كه در بالا نهاده شده مي آيد ... بستر رودخانه نيز از پشت جزيره اي به اندازه يك صد درس به يك شادروان كه (ديواره اي )از سنگ ساخته شده بر مي خورد و بازگشته (و درياچه مي شود با فواره هاي شگفت انگيز ) و به سد جويبار مي افتد كه به آبادي‌ها مي رود و كشتزارها را سيراب مي كند. ايشان مي گويند:‌اگر شادروان نبود اهواز آباد نبود چه در آن هنگام از آب‌هايش بهره برداري نمي شد. شادروان درهايي دارد كه هنگام افزايش آب آنها را باز مي كنند ... صداي آب سرريز شده از شادروان در بيشتر سال آدمي را از خواب باز مي دارد.»

بند ديگري كه در سده چهارم پس از ميلاد توسط شاپور دوم (و يا احتمالا بازمانده‌اش اردشير دوم ) ساخته شده سد پل گونه دزفول است كه بر روي رودخانه كوفه زده شده و در محل پي پل قرار گرفته بوده است. از زمان ساسانيان نام سد ديگري به نام « بند قير »‌بر روي رودخانه كارون در محل پيوستن دو رود آب گرگر و آب دز به كارون بر جاي مانده كه پس از سدهاي شوشتر و اهواز از مهم ترين سدهاي روي كارون به شمار مي آمده است.چنان كه پيداست نام اين سد نماينده كاربرد « قير » براي آب بندي آن به منظور افزايش پا بر جايي و سختي و استحكام سد بوده است.
پادشاهان و مهندسان ساساني افزون بر ساختن سد بر روي كارون و كرخه در سرزمين عراق امروزي نيز به ساختن سدهايي به ويژه در كرانه شرقي اروند بين سامره و كوت مبادرت كردند . ساسانيان سيستم آبياري رودخانه دياله را گسترش دادند و در پديد آوردن نهرها تا آنجا پيش رفتند كه نياز به مقدار آبي بيشتر از آنچه كه دياله مي توانست بدهد پيش آمد. اين گره به كمك رودخانه اروند گشوده شد ، بدين معني كه ابتدا آب آن را با ابزارهاي بالا بردن آب و سپس با كانال هاي عظيم بالا مي بردند و آن را بدينوسيله به رود دياله سوار مي كردند . گسترش شبكه آبياري در جنوب ايران و بين النهرين در زمان خسرو اول پادشاه ساساني (579 ـ 531 م) به درجه بالاي خود رسيد . يكي از نمونه هاي اين گسترش كانال نهروان بوده است كه از پشت سد بر روي اروند نزديك محلي به نام دور ( (Dur تغذيه مي شده است . اين كانال بعدها در زمان خلفاي عباسي تعمير شد . كانال نهروان در محل باكوبه (واقع در پنجاه و سه كيلومتري شمال شرقي بغداد و حدود 110 كيلومتري پايين دست سد) به رودخانه دياله مي رسيد.10 نكته جالب توجه آن است كه كانال نهروان و رودخانه دياله در يك سطح و بدون هيچگونه كنترل مجازي به يكديگر مي رسيدند و اين نشان دهنده آن است كه مهندسان ساساني مي توانسته اند جاي سد را طوري برگزينند كه اين جريان و ارتباط طبيعي با دقت انجام گيرد. و اين خود نمايشگر تبحر آنان در پياده كردن نقشه و نقشه برداري ساختمان ها و تأسيسات بوده است. در حدود سي و شش كيلومتري جنوب باكوبه سدي به نام سد بلادي براي كنترل جريان آب در دياله ساخته شده بود كه آب دياله را به داخل كانال كوتاهي (كه در زير بغداد و بالاي تيسفون به اروند مي‌ريخت )‌كنترل مي كرد.
افزودن بر سدها و پل هايي كه شرح آنها آمد از باستان در سرزمين خوزستان بندها، پل ها و سدهاي ديگر نيز ساخته شده بوده است كه به آبياري زمين هاي پيرامون كمك فراوان مي كرده اند برخي از اين سدها عبارت بودند از : 11
ـ سد قلعه رستم ، در 33 كيلومتري شمال شوشتر بر روي كارون كه داراي سه دهنه بزرگ از بالا به پايين بوده است. نهري را كه از اين سه سد آب مي گرفته نهر « جوي بند » و يا « ديم چه » مي گفته اند . درازاي اين نهر آبياري 18 كيلومتر بوده است. ـ
ـ سد شعيبيه : كه در 24 كيلومتري جنوب غربي شوشتر و بر روي رودخانه دز ساخته شده بوده است.
ـ سد كارون : كه در 8 كيلومتري شمال اهواز قرار داشته است.

-سد عجيرب :كه در 36 كيلومتري شوشتر روي رودي با همان نام احداث شده است.

ـ سد كرخه : اين سد در 15 كيلومتري شمال حميديه واقع بوده و پيش تر به آن سد نهر هاشم مي گفته اند.
ـ سد ابوالعباس : در 18 كيلومتري رامهرمز واقع است و از سه دهانه تشكيل مي شده است.
ـ سد ابوالفارس : در جنوب شرقي رامهرمز.
ـ سد جراحي : در 29 كيلومتري جنوب رامهرمز.
يكي ديگر از آثار تاريخي دوران ساساني دژ باستاني ايزد خواست و آثار تاريخي مربوط به آن است. اين آثار كه در راه اصفهان به شيراز در 41 كيلومتري جنوب اصفهان واقع شده شامل قلعه ،‌آتشگاه ، پل ،‌كاروانسرا و سد نزديك آن است . سد ايزد خواست (يزد خواست‌) در ده كيلومتري جنوب دهكده يزد خواست قرار گرفته و درازايش 65 متر و پهناي آن نزديك 6 متر است . از ويژگي هاي اين بند كه تنها بخشي از آن برجاي مانده است ،‌آن است كه اين سد از نوع قوسي بوده است . 12 سد يزد خواست كه مي توان آن را نخستين بند قوسي جهان دانست از بناهاي دوره ساساني است . مصالح ساختماني سد شامل سنگ لاشه و ملات گچ و ساروج و نماي آن از سنگ تراشيده با اندود ساروج است . چنان كه پيداست اين بند براي جمع كردن آب هاي بهاري و جلوگيري از جريان سيل در منطقه ايزد خواست ساخته شده بوده است.
سد سكندر: درباره ديواره يا سدي كه در تاريخ به نام سد سكندر موسوم گشته نوشته ها و اخبار متعددي ذكر شده است . عده اي معتقدند اسكندر مقدوني در لشگر كشي هاي خود به شرق در منطقه ماوراء النهر بنا به درخواست مردم منطقه كه مرتبا در معرض تهاجم قومي به نام يأجوج و مأجوج بوده اند. اين سد را رد دهانه دره اي بنا مي كند تا جلوي مهاجمان گرفته شود. البته در انتساب بناي مذكور به اسكندر جاي شك فراوان وجود دارد و مي تواند مانند بسياري از داستان هاي تخيلي و ساختگي مربوط به اسكندر مطرود تلقي شود. اسكندر مهاجم با تهاجم سريع خود و مدت كمي كه در اختيار داشته و مرتبا در حال حمله و لشكر كشي بوده ، بعيد است كه چنين كار عظيمي را انجام داده باشد.

بلعمي در ترجمه خود از تاريخ طبري اوايل سده سوم هجري و به نقل از روايت قرآن13كريم ساختن سد يأجوج و مأجوج را به شخصي به نام اسكندر ذوالقرنين منتسب مي داند بر طبق آن مردم ‌از اسكندر مي خواهند برايشان سدي بسازد كه ميان آنها و اقوام مهاجم حايل باشد.
ابوريحان بيروني كه مي خواسته بداند كه محل سد سكندر در كجا بوده است در مورد شخصيت ذوالقرنين چنين نظر مي دهد كه وي يكي از اميران حميدي بوده است. مقدسي نيز در احسن التقاسيم في معرفه الاقاليم (صفحات 533 تا 538 ) با شرحي مشابه ابوريحان مي نويسد كه ديواره سد پنجاه ذراع كلفتي و بلندي داشته و با خشت هاي آهنين در مس پوشانده شده بوده است. از اين نوع روايت و روايات نظير آن مي توان احتمال داد كه سد موسوم به سد اسكندر نوعي ديواري دفاعي بوده است. علاوه بر سد سكندر در نوشته هاي تاريخي از ديواره هاي دفاعي ديگري نيز كه همگي در منطقه مازندران (طبرستان) ايجاد شده بودند نام برده شده است. اين سد ها يا ديوارها به نام هاي سد تميشه ،‌سد دربند ،‌سد انوشيروان ،‌سد مرو و باب الابواب شهرت يافته اند و احتمال دارد كه سد سكندر يكي از اين پنج ديوار ،‌بوده باشد . رواياتي كه ذكر شد همگي از وجود ديواره هاي دفاعي متعدد در ناحيه شمال خراسان و كناره درياي خزر حكايت مي كند . برخي از اين حفاظ ها به صورت سد يا بندي در دره اي بوده و برخي ديگر نيز به شكل ديواري طويل ازسدي تا سدي ديگر كشيده شده بوده است . سدها و ديواره هاي دفاعي در شمال خراسان براي حفاظت شهرهاي آن سامان از هجوم اقوام وحشي ايجاد شده بوده است. اين ناحيه از ايالت هاي مهم ايران در عصر هخامنشي به شمار مي آمده است و آن طور كه از تاريخ بر مي آيد كشور ايران از زمان كوروش هخامنشي در اين ناحيه همواره در معرض هجوم قبايل وحشي قرار داشته است با توجه به اين كه برخي ذوالقرنين را همان كوروش شاه هخامنشي دانسته اند بعيد نيست كه در آن عصر اقداماتي در دفاع از اين منطقه با ايجاد سدها و ديوارهاي حايل انجام گرفته باشد. اقدامات دفاعي احتمالا از دوره هخامنشيان آغاز شد،‌در عصر اشكانيان هم بنا بر شواهد موجود مانند ديوار دفاعي گرگان و تطابق نظريات باستان شناسي قوت يافت و در دوره ساسانيان نيز تأسيسات مزبور بازسازي شده و مواضعي نيز بدان افزوده گشته است و نيز به احتمال نزديك به يقين مي توان گفت كه اسكندر مقدوني چيزي در آن ناحيه نساخته است !‌نه سبك ساختماني و نه آثار باقيمانده ‌،‌هيچ يك حكايت از چنان اقدامي نمي كند و به طور حتم اسكندر در گذار از سرزميني بيگانه و در مدتي كوتاه نه انگيزه و نه توان انجام چنان كاري را داشته است . ضمن اين كه بعيد به نظر مي رسد كه مردم ايران كه اسكندر در برابر آنها حكم يك مهاجم و اشغالگر را داشت از يك بيگانه چنين درخواستي كنند و او نيز پاسخ دهد. انتساب نام اسكندر به اين بناها و ديگر آثار را بايد انگاره اي نادرست دانست كه به ذهن عوام راه يافته و در برخي نوشته ها نيز مغرضانه و يا نا آگاهانه ظاهر شده است


برچسب‌ها: سد سازی هخامنشیان, سد سازی

تاريخ : شنبه هفدهم خرداد 1393 | 0:19 | نویسنده : زهرا - دانلود رایگان
آزمایش اندازگیری نرمی ذرات گچ

آزمایش اندازگیری نرمی ذرات گچ

وسایل مورد نیاز :

ترازو ، الکهای نمره 8 ، 16 و 30

نکات :

بسته به  محل مصرف گچ نوع ریزدانه یا درشت دانه انتخاب می شود بطور مثال در پرداخت سطوح ریزدانه و در گچ و خاک یا تیغه گچی از درشت دانه استفاده می شود

200 گرم گچ را توسط ترازو وزن کرده و روی الکها که از بالا به ترتیب 8 16 30 روی  یکدیگر قرار دارند می ریزیم و الک می کنیم مانده روی هر الک را وزن می کنیم

استاندارد این آزمایش :

مانده روی الک     8                        0%

مانده روی الک     16             حداکثر5%

مانده روی الک     30   حداکثر8% تا15%


برچسب‌ها: آزمایش اندازگیری, نرمی ذرات گچ, گچ

تاريخ : شنبه هفدهم خرداد 1393 | 0:19 | نویسنده : زهرا - دانلود رایگان
كاشي كاري هنري ديرپا و ماندگار

كاشي كاري هنري ديرپا و ماندگار

 

كاشي كاري هنري است ماندگار كه از ديرباز بر مساجد و اماكن قديمي كشورمان و نيز اماكن مذهبي جهان نقش بسته است . بكارگيري انواع مختلف كاشي در تزئينات بناهاي مذهبي و مساجد بيانگر نوعي تقدس است كه در روح كلي هنرهاي اسلامي – ايراني متجلي است .

اوج هنر كاشي سنتي كه قديمي ترين سبك آن در مسجد كبود تبريز به كار رفته در زمان صفويه بوده است . كه امروز در شهرهايي چون مشهد ، شيراز و تهران نيز آثاري از اين هنر به چشم مي خورد . هم اكنون عمده هنرمندان اين رشته در اصفهان قرار دارند . كاشي كاري در رنگ هاي مختلف تهيه و اغلب در كتيبه ها ، مغازه ها ، گنبدها و سردر مساجد و حسينيه ها بكار مي رود .

ساخت كاشي كه با استفاده از خاك رس انجام مي شود از جمله اموري است كه مراحل مختلف آن بايد با ظرافت و تخصص خاص همراه باشد . اين مراحل نمونه برداري از خاك ، آزمايش و سپس تهيه خمير و قالب گيري را شامل مي شود . كاشي پس از خارج سازي از قالب به صورت خام پخت مي شود و سپس كار لعاب دهي آن در رنگ هاي مورد نظر انجام مي گيرد . به دنبال لعاب دادن ، پخت مجدد صورت مي گيرد ، كه با اين كار كاشي با يك رنگ ساده به دست مي آسد . اين كهشي ، به الوان يا كاشي معرق معروف است .

با وجود آن كه هر رنگ يك نقطه ذوب دارد اما رنگ هاي كاشي بايد به نحوي تنظيم شود كه نقطه ذوب همه آنها يكسان شود و اين كاري ظريف و تخصصي است .

كاشي انواع مختلف دارد و هر نوع آن داراي كاربردي ويژه است كاشي مخصوص كتيبه يك نوع آنست كه در بدنه ساختمان ها و ايوان و گلدسته هاي مساجد استفاده مي شود . كاشي مخصوص تزئينات جلو محراب و انواع شبكه هاو استفاده در نورگيري از ديگر انواع مختلف كاشي سنتي است .

چند تن از هنرمندان كاشي ساز اصفهاني در گفتگو با خبرنگار خبرگزاري جمهوري اسلامي كاشي كاري هاي موجود از زمان قاجاريه را در ساختمان هاي قديمي تهران و باختران از كارهاي هنري زبده كاشي كاري مي دانند . در كاشي هفت رنگ اصلي به كار مي رود كه از تركيب اين رنگ ها مي توان 20 رنگ مورد نياز در كاشي كاري را به دست آورد .

كاشي كاري اصفهاني از معدن لاجورد در كاشان براي مواد مورد نياز كاشي در گذشته ياد مي كنند و از مفقود شدن آن سخن مي گويند كه شايد خانه سازي بر روي اين معدن سبب اين فقدان بوده است . اين هنرمندان واردات لاجورد از خارج را در رژيم گذشته سبب دور ماندن از دستيابي به خودكفايي در تهيه رنگ عنوان مي كنند .

هنرمندان اصفهاني اصيل ترين سبك كاشي كاري را طرح سلجوقي مي دانند و پس از آن طرح هاي عباسي ، اسليمي ، قاجاري و گل و بوته را از لحاظ اصالت در مرحله بعدي قرار مي دهند .

كاشي سازي و كاشي كاري در كشورهاي تركيه ، ايتاليا ، مراكش ، و يونان نيز رايج است كه سبكي متفاوت از سبك ايراني دارد و ايران در اين هنر بخصوص در كار معرق اصالت خود را حفظ كرده است .

يك هنرمند معرق كار نياز به كاشي الوان ، نقشه صحيح ، ابزار كار و خطاط دارد . به همين دليل است كه هيچ كارگاه كاشي سازي را نمي توان ديد كه در آن نقاش و خطاط وجود نداشته باشد و به همين سبب كارگاه كاشي سازي با مشاركت دو يا چند تن از هنرمندان اين هنرها ايجاد مي شود .

اين هنر در اصفهان با توجه به كاشي كاري مسجد عمر عبدالعزيز در مسجد جامع اين شهر قدمتي بسيار دارد .

از كاشي كاران قديمي اصفهان از استاداني چون زنده ياد ابراهيم و محمود معصوم زاده ، آقاجان ايليا ، ابوالقاسم و عبدالله ايليا ، حسين موسوي زاده ، سيد جواد ملكوتي و يدالله مختاريان مي توان نام برد . همچنين از نقاشان زبده كاري كه آثارشان در مسجد ، ركن الملك هم اكنون موجود است بايد از مرحوم ميرزا عبدالجواد رجالي ياد كرد . از بهترين نقاشان فعلي اين حرفه هنري اساتيدي چون عباس كرباسيون ، احمد ارژنگ ، سيد جعفر دستيان ، و از خطاطان به حبيب الله فضائلي و نصرالله معين مي توان اشاره داشت هم اكنون 6 كارگاه اصلي همراه با 3 كارگاه فرعي در اصفهان اين هنر را ارائه مي دهند .

در مورد آثار موجود كاشي كاري در ارج از ايران بايد گفت كار هنرمندان اصفهاني هم اكنون در اماكن متبركه خارج از ايران يا شيخ نشين هاي حاشيه خليج فارس و نمايشگاه مونترال كانادا ديده مي شود . ضمن آن كه كاشي كاران اين شهر هم اكنون در مسجد هامبورگ مشغول نصب كاشي هاي ساخت اصفهان در اين شهراند .


برچسب‌ها: كاشی كاری

تاريخ : شنبه هفدهم خرداد 1393 | 0:19 | نویسنده : زهرا - دانلود رایگان
كاشي كاري

كاشي كاري

 

عهد صفوي :
« كاشي هفت رنگ » در اين دوره جائي مهم دارد، از آنجا كه تهيه كاشي معرق مشكل بود ، كاشي هفت رنگ متداول مي شود. اما از كاشي معرق هم استفاده مي شده است. شيوه ي كار كاشي هفت رنگ به اين ترتيب بوده است كه سفالها را به قطعات يك شكل (معمولاً مربع) مي بريدند و سپس روي آن را نقاشي مي كردند و مي پختند. اين قطعه هاي يك اندازه در كل مكمل يكديگر بودند. و بيشتر به اين جهت به كاشي هفت رنگ معروف هستند كه تنوع رنگي در آنها بسيار است. موضوع اين كاشي متأثر از نقاشي بوده است. و همچون نقاشيهاي صفوي تنوع طرح و رنگ و پرداخت در آنها بسيار قابل توجه است.

درآثار بسيار معروف عهد صفوي بايد از كاشيكاريهاي مسجد شيخ لطف الله و مسجد امام خميني (شاه سابق) در اصفهان نام برد. گنبد مسجد شيخ لطف الله و كاشيكاريهاي دروني و بيروني آن نيز دو نوع خود از پرارزش ترين آثار جهان به شمار مي رود. در مسجد امام خميني نيز هماهنگي رنگ ها و طرحهاي كاشيها به ظرافت و زيبايي در جهان معروف است


برچسب‌ها: كاشی كاری

تاريخ : شنبه هفدهم خرداد 1393 | 0:19 | نویسنده : زهرا - دانلود رایگان
دلایل استفاده از صفحه کف ستونی و بولت

ستون , دلایل استفاده از صفحه کف ستونی و بولت

 

ستونهای یک ساختمان اسکلت فلزی ، نقش انتقال دهنده بارهای وارد شده را به فنداسیون (به صورت نیروی فشاری ، کششی ، برشی یا لنگر خمشی) به عهده دارند. در این میان ، ستون فلزی با صفحه ای  فلزی که از یک سو با ستون و از سوی دیگر با بتن درگیر شده است روی فنداسیون قرار می گیرد. توجه به اینکه ستون فلزی به علت مقاومت بسیار زیاد تنشهای بزرگی را تحمل می کند و بتن قابلیت تحمل این تنشها را ندارد ؛ بنابراین صفحه ستون واسطه ای است که ضمن افزایش سطح تماس ستون با پی ، سبب می گردد توزیع نیروهای ستون در خد قابل تحمل برای بتن باشد. کار اتصال صفحه زیر ستونی با بتن بوسیله میله مهار (بولت Bolt) صورت می گیرد و برای ایجاد اتصال ، انتهای آن را خم می کنیم و مقدار طول بولت را محاسبه تعیین می کند. تعداد بولت ها بسته به نوع کار از دو عدد به بالا تغییر می کند ، حداقل قطر این میله های مهاری میلگرد نمره ۲۰ است ؛ در حالی که صفحه تنها فشار را تحمل می کنر ، بولت نقش عمده ای ندارد و تنها پایه را در محل خود ثابت نگه می دارد . نکته مهم هنگام نصب ستون بر روی صفحه تقسیم فشار این است که حتما انتهای ستون سنگ خورده و صاف باشد تا تمام نقاط مقطع ستون بر روی صفحه بیس پلیت بنشیند و عمل انتقال نیرو بخوبی انجام پذیرد . از آنجا که علاوه بر فشار ، لنگر نیز بر صفحه زیر ستونی وارد می شود ، طول بولت باید به اندازه ای باشد که کشش وارد شده را تحمل  نماید که این امر با محاسبه تعیین خواهد شد.

 

 انواع اتصال ستون به شالوده :

 جزئیات اتصال ستون فلزی به شالوده بتنی به نیروی موجود در پای ستون بستگی دارد . در ستون با انتهای مفصلی فقط نیروی فشاری و برشی از ستون به شالوده منتقل می شوند. اگر بخواهیم لنگر خمشی را نیز به شالوده منتقل نماییم ، در ان صورت ، نیاز به طرح اتصال مناسب برای این کار خواهیم داشت که اتصال گیردار خوانده می شود.

 

روش نصب پیچهای مهاری  :

 به طور کلی ، دو روش برای نصب پیچهای مهاری وجود دارد :

 الف) نصب پیچهای مهاری در موقع بتن ریزی  شالوده ها : در این روش  ، پیچها را در محلهای تعیین شده قرار می دهند و موقیعت آنها را به وسیله مناسبی تثبیت می کنند ؛ سپس اطرافشان را با بتن می پوشانند . روشهای گوناگونی برای تثبیت پیچهای مهاری در محل خود وجود دارد که صورت زیر توضیح خواهم داد :

 

روش اول : ابتدا بوسیله صفحه ای نازک مشابه با ورق کف ستونی که شابلن یا الگو نامیده می شود . قسمت فوقانی بولت و قسمت پایین را بوسیله نبشی به یکدیگر می بندیم تا مجموعه ای بدون تغییر شکل به دست آید ؛ آن گاه محورهای طولی و عرضی صفحه الگو را با مداد رنگی ( گچ و یا رنگ) مشخص می کنیم ؛ سپس بوسیله ریسمان کار یا دوربیت تئودولیت با میخهای کنترول محور کلی فنداسیون را در جهتهای طولی و عرضی به دست می آوریم و به کمک شخصی با تجربه در موقیعت مناسب آن قرار می دهیم. ( محور طولی و عرضی صفحه شابلن بر محور طولی و عرضی کلی فنداسیون منطبق می شود و در ارتفاع صحیح و به صورت کاملا تراز نصب می گردد.) سپس به وسیله قطعات آرماتور آن را به میلگردهای شبکه آرماتور فنداسیون یا به قطعات ورقی (که در بتن قرارداده اند )  جوش (منتاژ) داده می شود ؛ به گونه ای که هنگام بتن ریزی ، صفحه از جای خود حرکتی نداشته باشد. باید دقت داشته باشیم که در موقع بتن ریزی ، هوا در زیر صفحه شابلن ، محبوس نسود . برای این منظور ، معمولا سوراخ بزرگی در وسط شابلن تعبیه می کنند که وقتی بتن از اطراف زیر صفحه را پر می کند ، هوا از راه سوراخ خارج گردد و با بیرون زدن بتن از وسط صفحه ، از پر شدن کامل زیر آن اطمینان حاصل شود.

 

روش دوم : صفحه تقسیم فشار پیش از بتن ریزی پی به طور دقیق در محل خود قرار می گیرد و بوسیله آن بولت ها در جای خود ثابت می شوند . پس از بتن ریزی ، صفحه را از جای خود خارج می کنند و در کارگاه به طور مستقیم به پای ستون متصل می نمایند و پس از نصب ستون به همراه صفحه مهذه ها را محکم می بندند. در این حالت ، هر صفحه ای باید کاملا علامت گذاری شود تا هنگام نصب اشتباهی رخ ندهد.

 

روش سوم : صفحه را قدری بالاتر از محل اصلی خود نگه می دارند تا محل میله های مهار به طور دقیق تعیین شود ؛ سپس میله مهارها را ثابت می کنند و عمل بتن ریزی را انجام می دهند ؛ در حالی که صفحه هنوز در جای خود ثابت است . پس از پایان یافتن بتن ریزی صفحه را در تراز مورد نظر نگه می دارند . این عمل را می توان به وسیله مهره های فلزی در زیر صفحه ای که میله مهارها از درون آنها عبور کرده اند با پیچتندن و تنظیم آنها تا تراز لازم انجام داد. سپس فاصله های بین دو صفحه و روی بتن پی با ملات ماسه شسته و سیمان به نسبت یک حجم سیمان به دو حجم ماسه کاملا پر می گردد یا از ماسه سیمان نرم (گروت) استفاده می گردد.

 

ب) نصب پیچهای مهاری پس از بتن ریزی شالوده : در این روش ، در محل پیچهای مهاری به وسیله قالب در داخل بتن فضای خالی ایجاد می کنند که این قالب جعبه نامیده می شود  . میلگردی در بتن قرار می دهیم  ، پس از گرفتن و سخت شدن بتن شالوده ، جعبه را از محل خود خارج می کنیم ؛ سپس پیچ مهاری را در محل خود درگیر با آرماتور قرار می دهیم و تنظیم می کنیم و اطراف آن را با بتن ریزدانه ( با حفظ اصول بتن ریزی) پر می کنیم . لازم به یادآوری است جعبه ای که برای ایجاد فضای خالی لازم برای نصب پیچ مهاری به کار می رود ، باید چنان طرح ریزی و ساخته شده باشد که به سادگی و در حد امکان ، بدون ضربه زدن ، شکستن و خرد کردن از داخل بتن خارج شود. برای این منظور می توان از جعبه هایی که قطعات آنها به صورت کام و زبانه متصل می شوند یا از جعبه های لولایی و سایر اقسام جعبه ها استفاده کرد . در مواردی که از پیچهای مهاری با قلاب انتهایی و رکاب یا از پیچهای مهاری با انتهای کلنگی استفاده می شود . برای سزعت بخشیدن به کار ، از جعبه های ساخته شده یا ورقهای فولادی که در درون بتن باقی می مانند ، استفاده می شود . باید توجه داشت که این شیوه کار بیشتر برای فنداسیون ماشین آلات صنعتی در کارخانجات کاربرد دارند . لازم به ذکر است در بعضی مواقع برای اتصال کف ستون به شالوده ، به جای پیچهای مهاری از میلگردها یا تسمه هایی استفاده می کنند که به ورق کف ستون جوش داده می شوند که به این صورت می باشد که معمولا در موقع بتن ریزی ، مجموع ورق کف ستونها و مهارها را در شالوده کار می گذارند ، پس از گرفتن و سخت شدن بتن ، ستون را روی ورق کف ستون قرار می دهند و جوشکاری می کنند.

 

محافظت کف ستونها و پیچهای مهاری ( مهره و حدیده ) :

 

کف ستون ها از جمله قطعات ساختمانی هستند که اغلب در معرض اثر شدید رطوبت قرار دارند و باید به نحو مطلوب حفاظت شوند . در ساختمانهای معمولی و به طور کلی در ساختمانهایی که پس از پایان یافتن کار اسکلت فلزی دیگر نیازی به بازدید و تنظیم کف ستونها نیست ، اطراف کف ستون را با بتن پر می کنند و در صورتی که قبل از بتن ریزی سطوح فولادی خوب تمیز شده و کا جوش یا زغال جوش برداشته شده باشد ، بتن به فولاد می چسبد و آن را کاملا محافظت می کند . در بعضی دیگر از ساختمانها ، کف ستونها را نظیر سایر قطعات به وسیله رنگ محافظت می کنند  . در ساختمانهای صنعتی که امکان باز کردن و نصب مجدد آنها وجود دارد ، با مواد قیری مخلوط با ماسه نرم از کف ستون ها حفاظت می شود ؛ همچنین برای تمیز ماندن حدیدهای پیچهای مهاری و دوری از آسیب دیدگی باید قبل از بتن ریزی فنداسیون ، قسمت حدیدها به وسیله پلاستیک یا گونی یا سیم مناسب بسته شده ، پوشش مناسب صورت گیرد .

 منبع:sdaneshfar. blog f a . c o m


برچسب‌ها: صفحه کف ستونی و بولت, بولت

تاريخ : شنبه هفدهم خرداد 1393 | 0:19 | نویسنده : زهرا - دانلود رایگان
عمليات مورد نياز برای ساخت مجتمع مسکونیخلاصه شرح کار و عمليات مورد نياز برای ساخت مجتمع مسکونی

 

حجم تقريبی کارهای ساختمان و عمليات مورد نياز ساختمان معمولا"در جدول مقادير و واحد بها آمده است و نقشه هاي اجرايي ساختمان نيز جزئيات و نحوه انجام کار را نشان داده اند. شرح کار عمليات اجرايي ساختمان ها که بر اساس مدارک پيمان ، نقشه هاي اجرايي مصوب کار فرما ، مشخصات فني و استاندارد هاي مرجع که پس از تجهيز کارگاه در زمین ساختمان و اتمام عمليات خاکي مي بايست انجام گيرد شامل موارد زير بوده و ليکن محدود به آن ها نمي باشد :

 

 عمليات اجرايي معماري :

 - کرسي چيني ، ديوار چيني دو جداره و ديوار حائل و نماسازي طبق نقشه هاي اجرايي .

 - اجراي عايق کاري حرارتي و رطوبتي در ديوار و سقف طبق نقشه هاي اجرايي .

 - سنگ چيني کف ساختمان ( بلوکاژ )

 - زير سازي و بتن ريزي کف ها و پياده رو سازي و فرش كف با موازئيک و سنگ طبق مشخصات فني .

 -اجراي اندود گچ و خاک و گچ پرداختي در ديوار و سقف،سنگ ازاره، کاشي و رنگ آميزي طبق نقشه فني .

 - نصب نعل درگاهي ها ، چهار چوبهاي فلزي درها ، درهاي فلزي و چوبي و پنجره- هاي آلومينيمي و کمد ها و قفسه هاي چوبي طبق مشخصات فني .

 - ايزو لاسيون سروسيهاي بهداشتي ، کف ها و بام مطابق مشخصات فني .

 - شيب بندي کفهاي آشپزخانه ، سروسيهاي بهداشتي ، بام و...

 - کاشي کاري محلهاي مورد نياز نظير آشپزخانه و...

 - انجام عميات سقف کاذب در محلهاي مورد نياز.

 - انجام عمليات محوطه سازي مطابق نقشه هاي طراحي

 - ساير کارهاي مربوطه طبق نقشه ها و مشخصات فني

 

  عمليات اجرايي سازه:

 -پياده کردن محل، خاکبرداي، حمل خاکهاي اضافي به محل هاي مناسب،پی کنی، رگلاژ کف پي، بتن ريزي سبک (بتن مگر) مطابق نقشه ها و مشخصات فني مورد تاييد کارفرما.

 - آرماتوربندي، قالب بندي و بتن ريزي فونداسيون ساختمان.

 - ساخت و نصب اسکلت فلزي شامل تيرها، ستون ها، مهاربندها و کليه اقلام مورد نياز شامل برشکاري، سوراخکاري، جوشکاري، سنگ زدن و نيز برپايي و نصب و اجراي گروتينگ زير صفحه ستون و رگلاژ و بستن پيچ و مهره هاي لازم، طبق نقشه ها و مشخصات فني.

 -  آماده سازي سطوح و زنگ زدايي و اجراي دو لايه ضد زنگ طبق مشخصات فني.

 - اجراي سقف بتني تيرچه بلوک طبق نقشه ها و مشخصات فني.

 - ساير کارهاي مربوط طبق نقشه ها و مشخصات فني مورد تاييد کارفرما.

 

 عمليات اجرايي تاسيسات برقي :

- اجراي تاسيسات الکتريکي به طور کلي شامل تاسيسات الکتريکي داخل ساختمانها شامل نصب و اجراي سيستم توزيع نيرو از تابلو برق توزيع ساختمان به درون ساختمان، سيستم اتصال زمين و سيستم تلفن از جعبه تقسيم اصلي ساختمان به داخل ساختمان، طبق نقشه ها و مشخصات فني.

 

- سيستم توزيع نيرو در داخل ساختمانها از تابلو توزيع برق ساختمان به مصرف کننده هايي از قبيل روشنايي، پريزها، دستگاههاي مکانيکي مربوط به سيستم تهويه مانند هواکش ها، ارتباط توزيع برق ساختمان با مصرف کننده ها از طريق کابل يا سيم درون لوله هاي فولادي يا روي سيني و يا درون ترانشه کابل، نصب و اتصال چراغها، پريزها و کليدها، طبق نقشه ها و مشخصات فني.

 - انجام کليه سر سيم بندي، شماره گذاري ترمينال ها و سيم ها، ترمينال بندي و انجام اتصالات الکتريکي کليه تجهيزات برقي و تجهيزاتي که به برق نياز دارند مانند فن ها، دستگاههاي تاسيساتي، کولرها و غيره، طبق نقشه ها و مشخصات فني.

 - سيم کشي آنتن تا محل بام

 -اجراي سيم کشي هاي تابلوي اصلي برق و تابلوهاي فرعي براي هر نقطه

 -اجرا و کابل کشي سيستم ارت محوطه و ساختمان مطابق نقشه و مشخصات فني

 -ساير کارهاي مربوطه طبق نقشه و مشخصات فني

 

عمليات اجرايي تاسيسات مکانيکي :

 

-نصب هواکش هاي پنجره اي در فضاي سرويس و آشپزخانه طبق نقشه ها و مشخصات فني.

 - اجراي سيستم لوله کشي آب سرد و گرم مصرفي به صورت روکار يا توکار از جنس سوپرپايپ از محل انشعاب آب بهداشتي تا نقاط مصرف سرويسهاي بهداشتي، ساخت و نصب بست، آويز جهت نگهداري لوله هاي روکار و تست کليه لوله کشي ها، طبق نقشه ها و مشخصات فني.

 - اجراي سيستم جمع آوري و دفع فاضلاب ساختمان و محوطه شامل نصب سرويس هاي بهداشتي، اجراي کليه لوله هاي چدني و پلی اتيلنی و گالوانيزه و ادامه آن تا اتصال به منهول هاي دفع فاضلاب و در نهايت هدايت تالوله های فاضلاب شهری طبق نقشه ها و مشخصات فني.

 -ساير کارهاي مربوط طبق نقشه و مشخصات فني.

 

 عمليات اجرايي عمومي :

 - تهيه و ارائه روش هماهنگي پروژه و اخذ نقطه نظرات کارفرما تا مرحله تاييد آن.

 -تهيه و ارائه برنامه زمانبندي فعاليتهاي اجرايي در چهارچوب برنامه زماني کلي کار با استفاده از نرم افزار مورد تاييد کارفرما و در سطوح مختلف.

 - تحويل، بارگيري، حمل و باراندازي مصالح تحويلي کارفرما.

 -تجهيز و برچيدن کارگاه .

 -انجام عمليات راه اندازي و آزمايشات کار آيي کليه سيستمهاي مورد لزوم.

 - تهيه و ارائه گزارشات ماهيانه پيشرفت کار عمليات اجرايي.

 - ساير کارهاي مربوط طبق نقشه و مشخصات فني.

 - عليرغم نظارتي که توسط دستگاه نظارت به عمل مي آيد، مسئوليت صحت کليه روش ها و عمليات اجرايي به عهده پيمانکار بوده و پيمانکار بايد در ضمن اجراي کار تدابير لازم جهت جلوگيري از هرگونه خطرات و خسارات جاني و مالي به کارکنان و يا ساير افراد و تاسيسات جانبي موجود را اتخاذ نمايد. بديهي است در غير اينصورت مسئوليت عواقب حاصله به عهده پيمانکار خواهد بود.

 

 منبع:sdanshfar . blog f a . c o m


برچسب‌ها: ساخت مجتمع مسکونی, مجتمع مسکونی, روش ساخت ساختمان

تاريخ : شنبه هفدهم خرداد 1393 | 0:19 | نویسنده : زهرا - دانلود رایگان
نقش گنبد در معماری

نقش گنبد در معماری

یکی از کلیشه‌های رایج در مورد معماری ایرانی، توصیفاتی است که در مورد گنبد های زیبا آن وجود دارد. در این که گنبد به عنوان یکی از فرم‌های مورد استفاده در معماری ، تا چه حد می‌تواند زیبا و موزون باشد بحثی نیست ، اما مشکل آن است که در اکثر اوقات این توصیفات، به استعاره‌هایی ادبی تبدیل می‌شوند که شاید ربطی به دلایل پدید آمدن این فرم معماری در طول تاریخ و نحوه تکامل آن نداشته باشد. حتما شنیده‌اید که بسیاری از کسانی که شیفته هنر ایران هستند، گنبد ‌ها را نمادی از آسمان می‌دانند. اما آیا گنبد در معماری گذشته فقط کارکردی نمادین داشته و یا ضرورت‌های ساختاری و نیازهای ساختمانی باعث به وجود آمدن این فرم معماری شده‌است؟


کاخ یا آتشکده فیروز آباد

نیازهای ساختمانی
گنبد، یکی از انواع پوشش‌هایی است که برای پوشاندن سقف یک مکان می‌تواند مورد استفاده قرار بگیرد. پس در درجه اول، کاربردی کاملا ساختمانی دارد. اگر بخواهیم بحث را ساده کنیم باید بگوییم سقف یا پوشش یک فضای معماری، می‌تواند تخت یا منحنی (قوس دار) باشد. پوشش تخت یا مسطح، همین پوششی است که هم اکنون به طور معمول در ساختمان‌های مسکونی عادی مورد استفاده قرار می‌گیرد. پوشش غیر تخت، انواع گوناگونی دارد، مثل گنبد و انواع دیگر پوشش‌هایی که در آن از قوس‌ها و منحنی‌های دیگر استفاده می‌شود.

گنبد از نظر هندسی از دوران یک قوس حول محور عمود به وجود می‌آید. اما ضرورت استفاده از این نوع پوشش در گذشته چه بوده‌است؟


گنبد فیروز آباد

کمبود مصالح مناسب
همان طور که گفتیم برای پوشاندن یک فضا، یا باید از پوشش‌های تخت استفاده شود و یا پوشش‌های منحنی. معمار برای استفاده از پوشش تخت به تیر که عنصری افقی برای انتقال نیروهای سقف است احتیاج دارد و این دقیقن همان نکته‌ای است که باعث شد در مناطقی خاص، گنبد رواج پیدا کند. یعنی کمبود چوب مناسب برای استفاده در سقف در مناطقی مانند فلات ایران و میانرودان، باعث شد تا پوشش‌های منحنی شکل و گنبدها، که بدون استفاده از تیر می‌توانند دهانه‌های وسیعی را بپوشانند به وجود آید.


کاخ سروستان

از چند محل متفاوت به عنوان نخستین مکان‌هایی که پوشش‌های منحنی شکل در آنجا به کارفته، نامبرده می‌شود. ازجمله روستایی هشت هزارساله و مربوط به دوران نوسنگی در قبرس ، کلده در میانرودان و عراق امروزی و همچنین مناطقی در مصر و جنوب ایران در حوالی شوش و هفت تپه.

پلان آزاد
تاق و گنبد در معماری ایرانی توانست به عنوان پوشش اصلی فضای معماری، به تکامل برسد. در حقیقت استفاده وسیع از پوشش‌های تخت، مانند نمونه تخت جمشید در دوران هخامنشی یک استثناء در این زمینه محسوب می‌شود. در آن دوران به دلیل وسعت و توانایی فراوان امپراتوری هخامنشی، چوب لازم برای استفاده در تیرهای سقف از نقاطی دیگر مانند لبنان به ایران آورده می‌شد. اما در دوره‌های دیگر، استفاده از مصالح بومی ‌مانند خشت و آجر، بیشتر به صرفه بود و بنابراین فرم گنبد توانست رشد کند و به تکامل برسد.


نقشه و طرح سه بعدی کاخ سروستان

به جز قابلیت‌های ساختمانی گنبد، که می‌تواند در مناطقی که مصالح لازم مانند چوب در اختیار نیست در پوشش فضاهای معماری به کار رود؛ می‌توان به قابلیت آن در ایجاد فضاهای داخلی آزاد و گسترده اشاره کرد. استفاده از تیرهای چوبی برای پوشش سقف، این محدودیت را نیز به همراه داشت که می‌بایست از ردیف ستون‌های نزدیک به یکدیگر برای عبور تیرها استفاده شود. یعنی چون طول تیرهای چوبی نمی‌توانست بیش از حد معینی باشد بنابراین لازم بود تعداد زیادی ستون برای نگهداری آنها برپا شود. به عنوان مثال اگر به معماری تخت جمشید دقت کنید، در کاخی مانند صد ستون، تعداد ستون‌ها، ده ردیف در ده ردیف است که خواه ناخواه فضای داخل ساختمان را محدود می‌کند، گرچه باعث عظمت آن می‌شود. اما در مقابل آن، استفاده از پوشش گنبد باعث می‌شود تا فضای باز و آزادتری در داخل ساختمان در اختیار باشد.


هشت بهشت، اصفهان

رشد گنبد در دوران ساسانی
در دوران اشکانی و سپس ساسانی، استفاده از تاق وگنبد رواج بیشتری پیدا کرد و ابداعات مهمی در این زمینه صورت گرفت. در کاخ فیروز آباد استان فارس، که ساخت آن را به اردشیر بابکان نسبت می‌دهند، سه تالار بزرگ با استفاده از گنبد ساخته شده‌اند که قطر دهانه هرکدام از این گنبدها کمی بیش از سيزده متر است. از دیگر نمونه‌های مهم گنبدهای ساسانی می‌توان از گنبد کاخ سروستان نام برد که مربوط به دوران بهرام گور پادشاه ساسانی است و از آن به عنوان قدیمی‌ترین گنبد آجری در ایران نام می‌برند.

استفاده گسترده از فرم گنبد در ایران، باعث به وجود آمدن ابداعاتی شد که مورد استفاده معماران سایر نقاط دیگر جهان نیز قرار گرفت. در گفتار بعدی در این مورد با هم صحبت خواهیم کرد.


برچسب‌ها: گنبد, معماری

تاريخ : شنبه هفدهم خرداد 1393 | 0:14 | نویسنده : زهرا - دانلود رایگان
شیشه , لعاب

شیشه ,  لعاب

لعاب شیشه مذاب، سنگ چخماق یا سیلیس است که به وسیله حرارت به صورت مایع در می آید و باعث درخشش و جلای روی سفال یا کاشی می گردد. در واقع لعابها بخشی از شیشه ها هستند و برای برسی آنها باید شیشه را در شاخه های مختلف علوم مطالعه کرد.

از نظر واژه شناسی لعاب به ماده شیشه ای می گویند که به عنوان پوشش سطح بدنه های سرامیکی به کار می رود. لعاب طی فرایند تولید فراورده های سرامیکی روی سطح بدنه و پس از گذراندن فرایند پخت به وجود می آید و بسیاری از خواص بدنه سرامیکی را بهبود می بخشد. لعاب با به کار گیری مواد معدنی مختلف روی هر قطعه سرامیکی پوششی به ضخامت 15/0تا 4/0 ایجاد می کند و به خوبی به سطح بدنه می چسبد.  چنانچه این ماده شیشه ای با اکسید های فلزی مانند کبالت، قلع و... ترکیب شود، علاوه بر درخشندگی باعث ایجاد رنگهای زیبا و متنوع می گردد. وبه لحاظ زیبایی در رنگ دارای جنبه زیبایی و هنری است. جنبه کاربردی لعاب، پوشش شیشه ای دادن و غیر قابل نفوذ کردن ظروف سفالی یا کاشی هاست. به طوری که نفوذ آب در لعابها بسیار نا چیز و نزدیک به صفر است.همچنین در مقابل مواد شیمیایی با PH اسیدی و قلیایی مقاومت بالایی دارند. از دیگر ویژگی های مهم و مشخصه لعاب افزایش پایداری در مقابل ترک است.

ساختار لعاب مانند شیشه است.لعاب دارای ساختاری نا منظم (غیر بلوری) یا بلوری است. بر اساس نظریه زاخاریاسن شیشه های سیلیکاتی دارای ساختار نامنظم پیوسته، متشکل از چهار وجهی های  sio4 است. که توسط اکسیژن به یک دیگر متصل می شوند. طبق این نظریه ساختار شیشه و لعاب نزدیک به شاخه بلوری ولی با شبکه نا منظم است.

منبع:maremat59 . blogfa . c o m

http://gatch.blogfa.com



تاريخ : چهارشنبه بیستم فروردین 1393 | 16:58 | نویسنده : زهرا - دانلود رایگان
ميكروسيليس MICRO SILICONE

ميكروسيليس MICRO SILICONE

 

ميكروسيليس يكى از موادى است كه در دهه اخيراستفاده از آن در بتن به طور جدى مورد توجه مهندسين ساختمان قرار گرفته است. به دليل خصوصيات بارز پوزولانى ميكروسيليس، استفاده از آن جهت بهبود خواص مكانيكى و افزايش دوام بتن در كشور هاى پيشرفته رو به افزايش است.ميكروسيليس يك محصول فرعى حاصل از كوره هاى قوس الكتريكى در جريان توليد آلياژهاى فروسيليس ميباشد. اين ماده با داشتن بيش از 90 درصد سيليس با حالت غير كريستالى و به شكل ذرات بى نهايت ريز با قطر متوسط 1/0 ميكرون شديدا پوزولانى است و براى استفاده به عنوان يك ماده سيمانى در بتن بسيار مناسب است. استـفاده از آن در بتـن داراى فوايد بسـيار زيادى از جمله : كاهش تركهاى ناشى از هيدراتاسيون سيمان، دوام بهتر در مقابل آسيبهاى سولفاتها و آبهاى اسيدى و دست يافتن به مقاومتهاى نهايى بالا با استفاده از انواع سوپرروان كننده هاى بتن مى باشد.

از ديگر مزاياى مصرف ميكروسيليس كاهش تحرك يونهاى كلر و در نتيجه كاهش عمق نفوذ كلر در بتن بويژه در نواحى ساحلى جنوب ايران مى باشد.

موارد مصرف:

در بتن ريزى هاي مربـوط به ساخت اسكله هاى دريائى، شمعـها، سـتونها و قطـعات پـيش ساخته، فونداسيون ماشين آلات و كليه سازه هاى بتنى كه در معرض حملات شيميايى بويژه يون كلر و سولفاتها قرار دارند.

مــــــزايا:

- افزايش چشمگير مقاومتهاى مكانيكى بتن - كاهش نفوذپذيرى بتن - كاهش تحرك يون كلر - جلوگيرى از خوردگى آرماتور در بتن هاى مسلح روش و ميزان مصرف :

ميكروسيليس مانند سيمان هنگام ساخت بتن به آن اضافه ميشود. ميزان مصرف بهينه آن 10 الى 15 درصد وزن سيمان مصرفى است كه به همان ميزان ميتوان از مقدار سيمان مصرفى كاست .

توجه: در هنگام مصرف ميكروسيليس حتما ميبايستى از يك نـوع سوپرروان كننده بويژه سوپرروان كننده كه داراى سازگارى زيادى با ميكروسيليس مي باشد استفاده شود.

مشخصـات فنى :

آناليز شيميايى :

Sio2 : 93.6% Al2O3: 1.32% K2O : 1.01%

Sic : 0.5% CaO : 0.49% P2O5 : 0.16%

C : 0.3% MgO : 0.97% SO3 : 0.10%

Fe2O3: 0.37% Na2O : 0.31% CI : 0.04%

خواص فيزيكى :

سطح ويژه ذرات: 20 m² / g

انــدازه ذرات: 0.05 – 0.15 micron

وزن حجمى : 300 – 700 Kg / m³

 


برچسب‌ها: ميكروسيليس, MICRO SILICONE

تاريخ : چهارشنبه بیستم فروردین 1393 | 16:57 | نویسنده : زهرا - دانلود رایگان
هبلکس بتن سبک

هبلکس بتن سبک یا بتن هوادار اتوکلاوی

 
از مسائل و دغدغه های مهم مهندسان عمران  در امر طراحی، محاسبه و ساخت پروژه های عمرانی وزن سازه به منظور پایداری بهتر در برابر نیروی زلزله است. ازآنجائیکه امروزه تمامی ساختمان ها به صورت اسکلت فلزی و یا بتونی اجرا می‌شوند. پارتیشن ها و دیوارهای داخلی فقط نقش جدا کننده فضا را برعهده دارند و هرچه مصالح بکاررفته شده دراین اجزا سبک تر باشد تاثیر مستقیمی در کاهش وزن سازه دارد.
از این رو جایگزینی آجرهای هبلکس بجای آجرهای معمولی و سفال بسیار تاثیر گذار می‌باشد.
نکته قابل ذکر در مورد این آجرها وزن مخصوص پایین آنها است. بطوریکه اگر این آجرها را بر روی سطح آب قراردهیم به ته آب فرو نرفته و برروی سطح آب قرارمی‌گیرد.

در دنیای پیشرفته امروزی و با توجه به پیشرفت های صورت گرفته در زمینه های مختلف علمی، صنعت بتن دچار تحول گردیده است، تولید بتن سبک هبلکس حاصل همین پیشرفت ها می‌باشد.

بتنی که علاوه بر کاهش بار مرده ساختمان از نیروی وارد به سازه در اثر شتاب زلزله می کاهد. بتن سبک با توجه به ویژگی های خاصی که دارد دارای کاربردهای مختلف می‌باشد که برحسب وزن مخصوص و مقاومت فشاری آن تفکیک می‌شود.

با گسترش استفاده از بتن سبک در سراسر دنیا بویژه در کشورهای پیشرفته و شکل گیری آیین نامه های اجرایی آنها متاسفانه این نوع بتن که دارای قابلیت های منحصر به فردی می‌باشد در کشور ما ایران هنوز ناشناخته باقیمانده است.

هبلکس نام تجاری است که برای بتن هوادار اتوکلاوی (Autoclaved Aerated Concrete - AAC) تولید شده در اروپا قرارداده اند که همان بتن سبک، بتن گازی سبک یا متخلخل می‌باشد و در سال 1924 میلادی توسط یک مهندس آرشیتکت سوئدی اختراع و به جامعه مهندسی معرفی گردید.
این بتن هم اکنون در اروپا و آمریکا به نام های تجاری YTONG و یا HEBELEX ارایه می‌شود. ساخت این محصول به روش اختلاط و پخت مواد اولیه انجام می گیرد.
حدود 60% وزنی مواد اولیه سنگدانه سیلیسی میکرونیزه شده با خلوص بالای ٨٠% می‌باشد و این میزان سیلیس غیر قابل جایگزینی با سایر سنگدانه های دیگر می‌باشد.
مصرف سیمان نیز کمتر از ١٠٠ کیلوگرم در هر مترمکعب می‌باشد.
پودر اکسید آلومینیوم مورد استفاده با دانه بندی تعریف شده و مخصوصی می‌باشد.
لازم بذکر است بکارگیری سیلیس از معادن و خردایش (خرد کردن) آنها تا حد زیادی تولید را غیر اقتصادی می نماید، در نتیجه کنترل کیفیت سیلیس در خط تولید نیاز به بررسی بیشتری دارد.

هبلکس مخلوطی از سیلیس، سیمان، آهک و ... درحرارت ۲۰۰ درجه سانتی گراد و فشار ۱۲ اتمسفر در اتوکلاوها پخته و به قطعات مورد نیاز ساختمانی بریده می‌شود. تولید بلوک هبلکس در
صنعت ساختمان ایران در سال 1367 توسط مرحوم علی اکبر بجستانی بنیانگذاری و شروع شده است.

این محصول امتیازات ویژه ای نیز نسبت به دیگر مصالح دارد از جمله این که عایق مناسب حرارتی و صدا می‌باشد، در برابر فشار مقاوم است، با ابزار معمولی به آسانی بریده می‌شود و می‌توان آن را به هر شکل تراشید، سوراخ کرد و یا تغییر شکل داد.
در موقعیت کنونی بتن سبک یا هبلکس بهترین ماده برای ساخت ساختمان های کوچک و بزرگ مسکونی، خدماتی، صنعتی و کشاورزی بویژه در مناطق زلزله خیز می‌باشد.


روش تولید هبلکس (HEBELEX)سیلیس از مهمترین مواد اولیه بتن سبک هبلکس می‌باشد و از معادن داخل کشور تهیه می‌شود، آهک نیز بصورت فرآوری شده و پخته شده به داخل کارخانه حمل می گردد.
در خط تولید بتن سبک یا هبلکس ۳ سیلوی نگهداری مواد اولیه وجود دارد که عبارتند از : سیلوی سیلیس، سیلوی آهک و سیلوی سیمان، که مواد اولیه پس از نگهداری در این سیلوها به تدریج وارد خط تولید می‌شوند. سیلیس، آهک و سیمان بوسیله الواتورهای مخصوص از سطح زیرین سیلوها به داخل آنها منتقل و درمدت زمان مشخص وارد خط تولید می‌شوند.

در نخستین مرحله از تولید بتن سبک، مواد اولیه شامل سیلیس و آب در آسیاب شماره 1 بصورت دوغاب یا گل در آورده می‌شود و در آسیاب شماره 2 مواد مورد مصرف شامل سیلیس، آهک و سیمان بصورت خشک پس از توزین مخلوط می‌شوند و در واقع دو آسیاب در این مرحله وجود دارد آسیاب شماره 1 (آسیاب مواد تر) و آسیاب شماره 2 (مواد خشک) که پس از مخلوط شدن و فرآوری، مواد به محل قالب ریزی انتقال داده می‌شوند.

پیش از آنکه مواد به قسمت قالب ریزی انتقال یابند بدقت توزین شده و در میکسرهای مخصوصی در مدت زمان لازم و مشخص مخلوط می‌شوند. در این بخش ۳ نوع مواد اولیه وجود دارد که توزین نهایی مواد در آنها انجام می‌شود. هر ۳ نوع مواد شامل آهک، سیمان و سیلیس در این بخش توزین شده و وارد آسیاب های خشک و تر می‌شوند
مرحله بعدی کار مرحله قالب ریزی مواد است که مواد مخلوط شده در داخل قالب هایی که هر کدام تقریبا ۳ متر معکب گنجایش دارند ریخته می‌شوند.

مخلوط متناسب از سیلیس، آهک، سیمان و آب که با شیوه ای هماهنگ در میکسرها عمل آوری شده است نیمی از حجم قالب ها را پر می کند. این مواد پس فعل و انفعالات شیمیایی در زمانی مشخص بصورت قالب های مورد نظر در می آیند این زمان حدود 3.5 ساعت به درازا می کشد. اینک زمان آن رسیده است تا قالب های تولیدی را به خط ریخته گری انتقال دهند. این قالب ها بوسیله شیفتر به خط ریخته گری کارخانه برده می‌شوند تا این مرحله از کار انجام شود.
قالب های تولیدی را بامازوت، اندود می کنند تا در مرحله ریخته‌گری چسبندگی ایجاد نشود.
بدلیل فعل و انفعالات شیمیایی در مرحله قالب ریزی، مواد اولیه حرارتی حدود ۷۰ درجه سانتی گراد تولید می کنند.

میزان حرارت موجود و آمادگی قالب ها برای خط برش بوسیله متخصصان کارخانه اندازه گیری می‌شود تا پس از اعلام آمادگی قالبها به خط برش منتقل شود.
بعلت تغییراتی که می‌تواند در مواد اولیه رخ دهد، این مواد پیش از ورود به خط، کنترل شده و آزمایش های شیمیایی روی آنها انجام می‌شود و پس از ورود به خط نیز بنا به کیفیتی که درون قالب ها دارد، تحت آزمایش و کنترل کیفی قرار می گیرند.
در این بخش از کارخانه سطح خارجی قالب ها برداشته می‌شود تا یک سطح هموار و مشخصی از تمام قالب ها نمایان گردد در این قسمت دیوارهای جانبی قالب ها جدا و از واگن ها جدا می‌شوند و آنگاه به بخش برش انتقال می یابند. در این بخش پس از دیواره برداری از قالب ها، ابتدا برش های عرضی به قالبها داده می‌شود و آنگاه با دستگاههای برش و با دقت و توجه خاص کارکنان و متخصصان کارخانه برش های طولی قالب ها انجام خواهد شد. اندازه برش های طولی و عرضی قالب ها بسته به تقاضای مصرف کنندگان و بازار مصرف آن دارد که قابل تنظیم و تغییر خواهد بود.
پس از مرحله برش، قالب ها بر روی واگن های مخصوصی قرار می گیرند تا به بخش بلوکی که مرحله پخت قالب هاست انتقال یابد.
قالب های هبلکس در مرحله پخت وارد اتو کلاوها می‌شوند و در حرارت ۲۰۰ درجه سانتی گراد و با فشار ۱۲ اتمسفر پخته و عمل آوری می گردد.
قالب ها در اتوکلاوها و پخت کامل به بخش بار انداز محصولات آماده تحویل انتقال می یابند تا به تدریج به بازار مصرف عرضه شود.

مشخصات فنی بتن سبک اتوکلاوی - هبلکس
وزن مخصوص

هر متر مکعب دارای 650 الی 750 کیلوگرم می‌باشد که برابر یک سوم تا یک چهارم وزن بتن می‌باشد. (بسته به نوع مصالح و مواد اولیه و نوع تجهیزات تولید متفاوت است و هم اکنون توسط دستگاه های جدید و مرغوب تر امکان تهیه با دانیسته کمتر نیز وجود دارد)

مقاومت فشاری
25 تا 35 کیلوگرم بر سانتیمتر مربع می‌باشد که امکان افزایش آن بر حسب امکانات تولید کننده و نوع سفارش مشتری و مشخصات فنی مورد نیاز نیز برای تولید کننده امکان‌‌پذیر می‌باشد.

اجرا و نصب
کار کردن با بلوک سبک هبلکس بسیار آسان است، می‌توان آن را بر اساس نیاز در محل مورد استفاده بوسیله اره برش داد، براحتی میخ در آن کوبید و یا مسیر تاسیسات برقی و تاسیسات مکانیکی را به راحتی در آن ایجاد نمود.

مقاومت حرارتی
مقاوت بسیار بالای هبلکس از بارزترین مزایای آن می‌باشد به عبارتی هبلکس در مقابل آتش و شعله های مستقیم ضریب حرارتی برابر 0.17 W.m2k را دارا می‌باشد.

ابعاد
بلوک های بتن سبک هبلکس در ابعاد 60*25*10، 60*25*15، 60*25*20، 60*25*25 و 60*25*30 سانتیمتر ارایه می‌شوند که این ابعاد بسته به نیاز و سفارش قابل تغییر نیز می‌باشد.

مزایای فنی بلوک های بتن سبک هبلکس (HEBELEX)
سبکی وزن، عایق حرارات و برودت، عایق صدا، استحکام و پایداری در مقابل زلزله و آتش سوزی، حمل و نقل آسان و با صرفه، اجرای سریع از مهمترین و بارزترین مزایای بلوک های هبلکس می‌باشد.
با توجه به مبحث 18 و 19 آیین نامه مقررات ملی ساختمان به منظور محاسبه ایمنی ساختمان ها در برابر زلزله، بکارگیری مصالح سبک وزن، مناسبترین و باصرفه ترین شیوه برای افزایش ایمنی ساختمان ها می‌باشد بطوریکه بلوک های هبلکس تامین کننده این مزیت فنی است.

یک متر مکعب بلوک هبلکس در حدود 600 الی 700 کیلوگرم وزن دارد که برابر 866 عدد آجر به وزن 1750 کیلوگرم می‌باشد. در صورتیکه سایز متداول و رایج بلوک هبلکس که ابعادی برابر 60*25*20 می‌باشد مطابق ابعاد با 26 عدد آجر می‌باشد اما از نظر وزن تنها با 10 عدد آجر برابر بوده و یک کارگر به راحتی می‌تواند آن را حمل، جابجا و سریع هم نصب نماید.
ملات مصرفی در اجرای بلوک های هبلکس برابر 25% ملات مورد مصرف در دیوار آجری به همان مشخصات می‌‎باشد و ملات مصرفی در بلوک های هبلکس از عیار کمتری نسبت به ملات مصرفی آجر برخوردار می‌باشد. به عنوان مثال برای اجرای یک دیوار با آجر به 100 کیلوگرم سیمان نیاز باشد همان دیوار از بلوک هبلکس تنها به 15 کیلوگرم سیمان نیاز دارد.
همچنین بارگیری و حمل بوک های هبلکس که در قالب های 3.15 متر مکعبی بسته بندی نوار تسمه کشی می‌شوند با استفاده از جرثقیل فکی و تریلی کفی به راحتی و با هزینه کمتری صورت می‌پذیرد. یک تریلی 9 پالت بزرگ هبلکس برابر 28.38 متر مکعب را حمل می نماید.

مزایای اقتصادی بلوک های هبلکس
پروژه های ساختمانی با استفاده از بلوک های هبلکس با در نظر گرفتن سرعت اجرا، نیروی اجرایی کمتر و مصرف ملات کمتر و همچنین کاهش زیاد بارهای وارده به سازه به دلیل وزن کم دیوارهای از نوع بتن سبک هبلکس موجب کاهش ابعاد سازه می‌شود که خود صرفه جویی قابل ملاحظه ای را در هزینه مصالح مصرفی موجب می گردد.
عایق بودن هبلکس در برابر گرما، سرما علاوه بر صرفه جویی چشمگیری که در فضاهای تاسیساتی و سطح حرارتی برودتی موجب کاهش قابل ملاحظه در مصرف انرژی لازم برای سرمایش و گرمایش ساختمان در آینده خواهد شد.

دستور العمل اجرایی
کادر اجرایی

کارکردن با بلوک های بتن گازی سبک هبلکس نیاز به تخصص خاصی ندارد، با توجه به ابعاد و سهولت کار با هبلکس سرعت اجرا نیز نسبت به آجر و سفال تا دو الی سه برابر افزایش می یابد.

ملات مورد نیاز
همان ماسه و سیمان می‌باشد و با توجه به اینکه بلوک های هبلکس یک نوع بتن سبک می‌باشد و همگونی کاملی با ملات ماسه و سیمان دارد می‌توان نسبت ترکیب را به پنج یا شش به یک تبدیل و در مصرف سیمان صرفه جویی بیشتری نمود در مواردی که تیغه بندی ها مورد اجرا با آب و رطوبت در تماس و ارتباط نباشند (مانند دیوارهای اتاق خواب) می‌توان از ملات گچ و خاک (به لحاظ صرفه جویی اقتصادی) نیز استفاده نمود.

جذب آب
با توجه به ابعاد و متخلخل بودن بلوک های بتن سبک هبلکس رطوبت و نم توسط این بلوک ها منتقل نمی‌شود.
نکته: در عین اینکه بلوک های هبلکس رطوبت و نم را منتقل نمی کنند ولی در سطح بلوک آب بیشتری را نسبت به مصالح مشابه جذب می‌کند، لذا در زمان استفاده از این بلوک ها باید نکات زیر را رعایت نمود:
1- قبل از اجرا بلوک های هبلکس می‌بایست کاملا خیس شوند.
2- ملات مصرفی را نیز باید با دقت بیشتری تهیه نمود.
3- بعد از اجرا به دیوارها آب داده شود.

اندود گچ و خاک
با توجه به سطح صاف و صیقلی هبلکس نسبت به سایر مصالح (در صورت اجرای صحیح دیوارهای) به اندودی بیش از 1 الی 2 سانتیمتر نیاز نخواهند داشت یعنی در هر طرف 0.5 الی 1 سانتیمتر.

نصب تاسیسات و نما سازی
مانند سایر مصالح می‌باشد و چنانچه به صورت صحیح اجرا شود با مشکلی روبرو نخواهد شد.


برچسب‌ها: هبلکس, بتن سبک, بتن, بتن هوادار اتوکلاوی

تاريخ : چهارشنبه بیستم فروردین 1393 | 16:57 | نویسنده : زهرا - دانلود رایگان
سوپر فريم R.C فناوري نوين براي مقابله با زلزله

سوپر فريم R.C فناوري نوين براي مقابله با زلزله

 

ساختمان مسكوني از نظر اسكلت بايد نه تنها مقاوم در برابر نيروهاي زلزله ساخته شود، بلكه بايد داراي دوام لازم در مدت زمان پيش‌بيني شده براي بهره‌برداري از آن نيز باشد. اگرچه از نظر كاركرد اقتصادي مي‌توان بخش‌هايي از ساختمان را از مصالح سبك بنا نمود، اما اسكلتي كه بتواند كاركرد درست داشته باشد معمولاً وزن قابل ملاحظه‌اي از ساختمان را به خود اختصاص مي‌دهد. با افزايش ارتفاع و به تبع آن نيروهاي حاصل از زلزله مقاطع باربر ساختمان بسيار بزرگ شده و تكان‌هاي ناشي از نيروي زلزله، در طبقات فوقاني شديد مي‌شود (شتاب و تغيير مكان‌هاي بيشتر از حد مجاز). براي اجتناب از اين مسائل، روشي تحت عنوان سوپرفريم R.C براي اسكلت ساختمان، در كشور ژاپن، ابداع شده و به‌ عنوان جديدترين فناوري به ‌مورد اجرا گذاشته شده است. با توجه به امكان انطباق و اجراي اين روش با پتانسيل‌هاي موجود در داخل كشور، روش سوپرفريم به ‌عنوان يك روش اقتصادي و فني جهت اجراي ساختمان برج مسكوني پرديسان تبريز انتخاب شده است.

پيشگفتار
با توجه به قرار گرفتن كشور ما بر روي كمربند زلزلة آلپ – هيماليا، سالانه تعداد قابل ملاحظه‌اي زلزله در آن رخ مي‌دهد. براساس آمار موجود، تقريباً همه ساله، يك زلزله با بزرگي بيش از 6 ريشتر و، در هر چند سال، يك زلزله مخرب بزرگتر از 7 ريشتر، در كشور، رخ مي‌دهد. اين مسأله نشان مي‌دهد كه توجه كردن به پايداري ساختمان، در برابر زلزله، يك ضرورت اصلي است. اگرچه در سال‌هاي اخير بلند مرتبه‌سازي در كشور رونق فراواني يافته است، اما اغلب، روش ساخت به‌ صورت سنتي انجام پذيرفته و تنها با بزرگ كردن ابعاد يك ساختمان سنتي دو يا سه طبقه اقدام به ساخت بنا‌هاي بيست طبقه و يا بلندتر شده است. واضح است كه، با تكيه بر روش‌هاي سنتي، نمي‌توان ساختمان بلندي كه در برابر زلزله‌هاي مخرب مقاوم باشد، ساخت.
حتي اگر كليه ضوابط آيين‌نامه زلزله از نظر طراحي و محاسبات رعايت شده باشد، با اجراي سنتي و دخالت انسان در اجزاي مقاوم كننده ساختمان همانند بتن‌ريزي‌ها و جوشكاري‌ها هرگز نمي‌توان به يك سازه مناسب دست پيدا كرد.
ساختمان حتي اگر در محدوده كوچكي اشكال اجرايي داشته باشد، در زمان وقوع زلزله از آن ناحيه، آسيب‌ديده و خرابي به ساير نقاط سرايت خواهد نمود. فناوري‌هاي نو تلاش مي‌كنند تا دخالت انسان را در حين ساختن به حداقل رسانده و با صنعتي كردن اجرا، يك ساختمان همگن و مطمئن بنا نمايند.
يكي از روش‌هاي مدرن و مناسب براي كشور ما روش سوپرفريم R.C است كه در سال‌هاي اخير، به خصوص پس از وقوع زلزله مخرب كوبه در كشور ژاپن، ابداع شده و هم اكنون ساختمان‌هاي بلند مسكوني زيادي را با آن روش به مورد اجرا مي‌گذارند. در اين روش ضمن كاهش مقاطع باربر، با پيش‌ساخته نمودن ستون‌ها و همچنين كنترل حركات ساختمان در حين زلزله و جذب انرژي به وسيله ميراگرهاي هيدرومكانيكي، يك ساختمان مطمئن از نظر رفتار در برابر نيروها و بسيار مناسب براي سكونت ساخته مي‌شود.
ساختمان فلزي يا بتن آرمه
در كشور ژاپن ترجيح مي‌دهند كه ساختمان‌هاي مسكوني را با اسكلت بتن آرمه بنا كنند. اسكلت فلزي بيشتر براي اجراي ساختمان‌هاي اداري و تجاري، ايستگاه‌ها و غيره مورد استفاده قرار مي‌گيرد. دليل انتخاب اسكلت بتن آرمه، را براي ساختمان‌هاي مسكوني، مي‌توان به شرح زير بيان نمود: 
۱ ساختمان‌هاي بتن آرمه اغلب ارزان‌تر از ساختمان‌هاي فلزي ساخته مي‌شوند.
۲ ساختمان‌هاي بتن آرمه در مقابل سوانح آتش‌سوزي و انفجار دوام بيشتري دارند.
۳ در ساختمان‌هاي بتن آرمه، انتقال صوت بين طبقات (با توجه به اهميت آن به خصوص در كاشانه‌هاي مسكوني) كمتر است.
۴ با توجه به هماهنگي مناسب بين اجزاي جذب كننده نيروهاي زلزله و اسكلت (با قراردادن ديوار برشي) رفتار ساختمان مناسب‌تر خواهد بود.
توصيه‌هاي طراحي و ساخت
اغلب آيين‌نامه‌هاي زلزله براي ساختن بناهاي مقاوم در برابر زلزله توصيه‌هايي را ارائه مي‌نمايند. ابداع هرنوع فناوري بايد اين توصيه‌ها را در برگيرد : 
۵ پلان ساختمان به شكل ساده و متقارن در دو امتداد عمود بر هم و بدون پيش‌آمدگي و پس‌رفتگي زياد باشد و از ايجاد تغييرات نامتقارن پلان در ارتفاع ساختمان نيز احتراز شود.
۶ عناصري كه بارهاي قائم را تحمل مي‌نمايند در طبقات مختلف بر روي هم قرار داده شوند
تا انتقال بار اين عناصر به يكديگر با واسطه عناصر افقي صورت نگيرد.
۷ عناصري كه نيروهاي افقي ناشي از زلزله را تحمل مي‌كنند موكداً طوري طراحي شوند كه
انتقال نيروها به سمت شالوده به طور مستقيم انجام شود و عناصري كه با هم كار مي‌كنند در
يك صفحه قائم قرار داشته باشند.
۸ براي كاهش نيروهاي پيچشي ناشي از زلزله ،  مركز جرم هر طبقه بر مركز سختي آن طبقه
منطبق و يا فاصله آنها در هريك از امتدادهاي ساختمان از 5 درصد بعد ساختمان در آن
امتداد كمتر باشد.
۹ از احداث طره‌هاي بزرگتر از 5/1 متر حتي‌المقدور احتراز شود.
۱۰ از ايجاد سوراخ‌هاي بزرگ و مجاور يكديگر در ديافراگم‌هاي كف‌ها خودداري شود.
۱۱ با به كار بردن مصالح سازه‌اي با مقاومت زياد و مصالح غيرسازه‌اي سبك، وزن ساختمان به حداقل رسانده شود.
۱۲ ساختمان و اجزاي آن به نحوي طراحي گردد كه داراي شكل‌پذيري مناسب باشند.
۱۳ ساختمان به نحوي طراحي گردد كه عناصر قائم (ستون‌ها) ديرتر از عناصر افقي (تيرها) دچار خرابي شوند.
۱۴ اعضاي غيرسازه‌اي، به خصوص ديوارهاي داخلي و نماها، طوري اجرا شوند كه حتي‌الامكان مزاحمتي براي حركت اعضاء سازه‌اي در جريان زلزله ايجاد نكنند. در غير اين‌صورت اثر اندركنش اين اعضا با سيستم سازه‌اي بايد در تحليل سازه در نظر گرفته شود.
۱۵ اعضاء و قطعات غيرسازه‌اي، به خصوص قطعات نما و شيشه‌ها، آن‌چنان طراحي و اجرا شوند كه در هنگام وقوع زلزله از سازه جدا نشده و با فرو ريختن خود ايجاد خسارات احتمالي جاني و مالي نمايند.
۱۶ روش ابداعي سوپرفريم نه تنها توصيه‌هاي مذكور را در نظر مي‌گيرد بلكه با ملحوظ نمودن انواع توصيه‌هاي ايمني ديگر مانند آتش‌سوزي و انفجار و … مسائل جديدي را از ديد اجراي بخش‌هاي تأسيساتي در نظر گرفته دارد تا علاوه بر دسترسي آسان به كليه بخش‌هاي تأسيساتي، هرگونه تعمير و تعويض در آنها بدون ايجاد مزاحمت، براي ساير همسايه‌ها، عملي شده و همه دسترسي‌ها از داخل خود واحدها صورت گيرد.

اجزاي اصلي سازه سوپرفريم R.C با تشريح اسكلت يك ساختمان اجرا شده، به روش سوپرفريم، مي‌توان به نحوه كاركرد آن پي برد. شكل (1) به طور شماتيك اسكلت و شكل (2) نماي چنين ساختماني را نشان مي‌دهد. همان‌طور كه ملاحظه مي‌شود، بخش‌هاي باربر ساختمان ازشش جزء تشكيل شده است. اين اجزاي را مي‌توان به صورت زير تشريح نمود:
1- سوپروالسوپروال يا ديوار برشي مركزي هسته اصلي باربر نيروهاي قائم و به خصوص نيروهاي زلزله مي‌باشد كه با مقطع I شكل اجرا مي‌شود. اين ديوار برشي، كه در هسته ساختمان قرار مي‌گيرد، از بخش پايين بر روي فونداسيون قرار گرفته و در بخش بالاي خود به سوپربيم منتهي مي‌شود. ديوار برشي به‌ صورت بتن در جا، اجرا مي‌گردد كه بتن آن در بخش‌هاي پايين بتن با مقاومت بالاست. با در نظر گرفتن شكل‌پذيري ساختمان، مقاومت بتن سوپروال از 60 نيوتن بر ميلي‌مترمربع در بالاي فونداسيون به مرور به مقدار 36 نيوتن بر ميلي‌متر‌مربع در بخش بالايي آن كاهش مي‌يابد. آرايش ميلگرد آن براساس انجام آزمايش‌هايي، بر روي قطعات مدل، طراحي شده است. از نظر اجرايي، سوپروال هميشه دو طبقه جلوتر از اجراي كف‌ها پيش مي‌رود تا وقفه‌اي در كار ايجاد نشود. شبكة ميلگردهاي اين بخش، به دليل سنگيني زياد در سطح زمين ساخته شده و به‌ وسيله جرثقيل برجي در محل خود نصب مي‌شود. جرثقيل برجي بايد حداقل قادر به جابجايي 10 تن بار باشد. شكل (3) مراحل اجراي ديوار برشي را نشان مي‌دهد.
2- ستون‌هاي اتصالي
در طرح سوپرفريم، در هريك از نماهاي ساختمان دو ستون اتصالي و جمعاً به تعداد هشت عدد، اجرا مي‌گردد. اين ستون‌ها كه بزرگ‌ترين مقطع (ستون) را در ساختمان دارند (مقطع 1/1 * 1/1 متر) به‌ دليل قرار گرفتن در نماي ساختمان، فضاي داخلي را اشغال نمي‌كنند. وظيفه اصلي اين ستون‌ها، انتقال نيروي زلزله از بالاي ساختمان بر روي پي مي‌باشد. اين ستون‌ها به صورت پيش‌ساخته در سطح كارگاه ساخته مي‌شوند. با توجه به اهميت آنها در محافظت ساختمان از تصادم اشياي خارجي در حين بهره‌برداري و با عنايت به كاركرد آنها، كنترل كاملاً دقيقي بر روي قطعات پيش‌ساخته انجام مي‌شود و اگر بتن ستوني مناسب نبوده باشد آن ستون از رده خارج مي‌شود. مقاومت بتن در اين ستون‌ها نيز به‌ صورت هماهنگ با سوپروال از 60 تا 36 نيوتن بر ميلي‌مترمربع متغير است. در شكل (4) ستون‌هاي پيش‌ساخته دپو شده در محل كارگاه نشان داده شده است.
3- لوازم جذب انرژي (ميراگرها)
يك ساختمان بلند بايد در مقابل تكان‌هاي شديد ناشي از زمين‌لرزه رفتار كاملاً پيش‌بيني شده‌اي را داشته باشد. قراردادن لوازم جذب انرژي اگرچه از حدود 30 سال پيش در دنيا رواج پيدا كرده است، اما گذاشتن نوع خاصي از آنها در بالاي ساختمان، تنها در تكنيك سوپرفريم استفاده مي‌شود. لوازم جذب انرژي كه همانند يك كمك فنر بسيار بزرگ عمل مي‌كنند رفتار ساختمان را كنترل كرده و سطح تنش‌ها را به ميزان قابل ملاحظه‌اي كاهش مي‌دهند. در ساختمان سوپرفريم با ارتفاع 33 طبقه تعداد 32 عدد از آنها كه چهار عدد بر روي هر ستون اتصالي قرار مي‌گيرد نصب خواهد شد. بنابراين در هنگام وقوع زلزله، نيروهاي حاصل از زلزله بر ديافراگم‌هاي هر طبقه اثر كرده و نيروها به سوپروال منتقل مي‌شود. سوپروال با جذب نيروها تغيير مكان‌ها را به بالاترين نقطه ساختمان منتقل مي‌كند. تغيير مكان‌ها به چهار عدد سوپربيم كه در بالاي سوپروال قرار مي‌گيرند منتقل شده و از طريق آنها به لوازم جذب انرژي انتقال مي‌يابند. اين لوازم هم به صورت فشاري و هم كششي عمل كرده و نيروهاي زلزله را پس از كاهش دادن بر روي ستون‌هاي اتصالي منتقل مي‌كنند و همان‌طور كه ذكر شد، نيروها سپس از طريق ستون‌هاي اتصالي به صورت قائم بر روي پي منتقل مي‌شوند. در شكل (5) تصوير ميراگرهاي نصب شده برروي ساختمان مشاهده مي‌گردد.
4- سوپربيمدر بالاترين بخش اسكلت ساختمان چهار عدد تير با مقطع بزرگ (00/1 * 00/4 متر) بر بالاي سوپروال قرار مي‌گيرند كه تغيير مكان‌هاي آنرا به لوازم جذب انرژي منتقل مي‌نمايند. اين تيرها كاركرد بسيار حساسي را در هنگام وقوع زلزله و يا برخورد يك شيء خارجي به ساختمان از خود نشان مي‌دهند. تصوير سوپربيم از منظره پايين آن در شكل (6) ارائه شده است.
5- ستون‌هاي سادهساختمان با سوپرفريم، فري پلان (Free Plan) نيز ناميده مي‌شود واين بدان معنا است كه به دليل مسطح بودن كف‌ها و عدم وجود ستون‌هاي مياني زياد (تنها يك ستون مياني در يك كاشانه 235 مترمربع وجود دارد) مي‌توان هر نوع پلان دلخواه را در هر طبقه پياده نمود. درحقيقت نه تنها تكنيك سوپرفريم، از منظر سازه‌اي، آخرين دستاورد به شمار مي‌رود بلكه اين تكنيك، از نظر معماري، نيز به آخرين دستاوردها متكي است يعني " ما بايد خودمان را با سليقه استفاده‌كنندگان تطبيق دهيم ".
6- ديافراگم‌ها
كليه كف‌سازي‌ها به صورت دال ديافراگمي اجرا شده و تنها يك تير مياني از تقاطع دال‌ها در دو تراز مختلف و با اختلاف 30 سانتي‌متر شكل مي‌گيرد. اين كف‌ها به صورت كاملا مشخص نيروهاي زلزلة طبقات را به هسته مركزي (سوپروال) منتقل مي‌نمايند.اين نوع كف‌ها ارجحيت زيادي دارد، به طوري‌كه عدم وجود تيرهاي با ارتفاع زياد انعطاف در پلان را زياد مي‌كند و در نتيجه سقف‌ها مزاحمتي براي اجراي تأسيسات ايجاد نكرده و ساختمان را براي شرايط (Free Plan)مهيا مي‌سازد. در طراحي سقف‌ها كه به صورت دال اجرا مي‌شوند دو سطح با اختلاف 30 سانتي‌متر در نظر گرفته شده است. بخش‌هاي داخلي كه سرويس‌ها و آشپزخانه و غيره بر روي آن قرار مي‌گيرند 30 سانتي‌متر پايين‌تر از كف اتاق‌ها و ساير قسمت‌ها اجرا مي‌گردند. از اين بخش كليه خطوط لوله آب و فاضلاب و گاز واحدها عبور داده مي‌شود كه با اجراي كف كاذب در مواقع اضطراري مي‌توان از داخل هر واحد به لوله‌ها دسترسي پيدا كرد.
كليه خطوط برق، تلفن و تهويه مطبوع در زير سقف‌ها به آن متصل مي‌شوند و يك سقف كاذب كم وزن روي آنها را مي‌پوشاند. در شكل (7) مراحل بتن‌ريزي ديافراگم‌ها قابل مشاهده است.
ساير موارد فني
موارد فني متعددي در ساختمان شده است. به طوركلي نه تنها ستون‌ها بلكه ديوارهاي نما به همراه اجزاي نماسازي آنها به صورت پيش‌ساخته اجرا مي‌شوند. ستون‌ها كه به طور عمده براي حمل نيروهاي قائم عمل مي‌كنند در كنار كارگاه به صورت خوابيده اجرا مي‌شوند تا در زمان مقرر به وسيله جرثقيل در جاي خود نصب گردند. ديوار برشي با استفاده از قالب لغزنده اجرا مي‌شود. معمولاً با تعبيه مناسب به صورت قائم و با قرار دادن يك آسانسور ساده مي‌توان در كنار كارگاه ميلگردها را با ارتفاع 12 متر آماده نموده و سپس به وسيله جرثقيل برجي آنرا به بخش‌هاي لازم منتقل نمود.
كليه ارتباطات قائم ساختمان از نظر مسير خطوط اصلي، راه پله‌ها و آسانسورها در جوار ديوار برشي ساخته مي‌شوند.
معمولاً مي‌توان در زمان اجراي طبقه هشتم، طبقه همكف را از نظر تأسيسات و نازك كاري به اتمام رساند. اجزاي جدا كننده به صورت ديوارهاي گچي پوسته‌اي پيش‌ساخته (دراي وال) نصب مي‌شوند. بر روي كف‌ها يك لاية سه‌لايي به ضخامت حدود 20 ميلي‌متر نصب شده و كف‌پوش‌ها بر روي آن اجرا مي‌گردند.
قالب‌بندي سقف‌ها به دليل يكنواخت بودن آنها به صورت قالب‌هاي سبك فلزي بوده كه سريعاً قابل باز و بسته كردن هستند.


برچسب‌ها: سوپر فريم, فناوري نوين, مقابله با زلزله

تاريخ : چهارشنبه بیستم فروردین 1393 | 16:57 | نویسنده : زهرا - دانلود رایگان
بتن سبک تاریخچه خواص ویژگی معایب

بتن سبک تاریخچه خواص ویژگی معایب

 

مقدمه :

نیاز گسترده و روز افزون جامعه به ساختمان و مسکن وضرورت استفاده از روش ها و مصالح جدید به منظور افزایش سرعت ساخت سبک سازی افزایش عمر مفید ونیز مقاوم نمودن  ساختمان در برابر زلزله را بیش از پیش مطرح کرده است .حل مشکلاتی نظیر زمان طولانی  اجرا عمر مفید کم ویا هزینه زیاد  اجرای ساختمان ها نیاز مند ارائه راهکار هائی به منظور استفاده  عملی از روش های نوین ومصالح ساختمانی جدید جهت  کاهش وزن و کاهش زمان ساخت , دوام بیشتر ونهایتا کاهش  هزینه اجراست.سبک سازی یکی از مباحث نوین در علم ساختمان است که روز به روز در حال گسترش و پیشرفت میباشد.این فن اوری عبارتست از کاهش وزن تمام شده ساختمان با استفاده از تکنیک های نوین ساخت مصالح جدید و بهینه سازی روش های اجرا کاهش وزن ساختمان علاوه بر صرفه جویی در هزینه زمان و انرژی زیان های ناشی از حوادث طبیعی مانند زلزله را کاهش داده و صدمات ناشی از وزن زیاد ساختمان را به حداقل میرساند.

برای بکارگیری تکنیک های سبک سازی نخست باید به مسئله اول علل سنگین شدن وزن ساختمان توجه کافی شود پس از شناخت این علل و عوامل باید جهت حذف یا به حداقل رساندن تاثیر آنها ووزن تمام شده ساختمان تلاش نمود .

روش های سبک سازی ساختمان بطور عمده به دو دسته تقسیم می گردند :

1_سبک کردن اجزای باربر ساختمان

2_سبک کردن سازه ساختمان

بخش عمده ای از مباحث مربوط به سبک سازی وتکنیک های رایج در مورد دستیابی به وزن مناسب ساختمانی را در بر میگیرد که شامل:شناخت مصالح سبک رایج در صنعت ساختمان (در داخل و خاج کشور)وتکنولوژی استفاده از آنها, معیار های ارزیابی میزان کارایی این مصالح بعنوان مصالح سبک ومیزان تاثیر به کار گیری مصالح نو در کاهش وزن ساختمان  هزینه و زمان مورد نیاز اجرای یک ساختمان.

تعریف مصالح سبک :مصالح سبک به مصالحی اطلاق میشود که وزن مخصوص انها از نمونه های مشابه کمتر بوده واستفاده از آنها به کاهش وزن کلی ساختمان  بیانجامد.

مصالح سبک  در یک تقسیم بندی کلی به سه دسته تقسیم میشوند:

1_مصالح سبک سازه ای

 2_مصالح سبک غیر سازه ای

3_سیستم ها

مصالح سبک سازه ای:به ان دسته از مصالح گفته میشود که در موارد سازه ای در بنا به کار برده میشوندبه سه نوع تقسیم میشوند:

1_بتونی

2_طبیعی

3_صنعتی

 

بتن سبک:یکی از مصالح مهم و کار امد در صنعت ساختمان مدرن  است و دارای کاربرد های متنوعی  دارد.قاب های ساختمانی چند منطقه و دیوارهای جداکننده ,سقف های پوشاننده, صفحات انعطاف پذیر پل ها, عناصر پیش تنیده وپس تنیده وبقیه اجزا از جمله این مواد هستند در بسیاری از موارد فرم های معماری از تلفیق شده طرح های عملکرد ای میتواند به اسانی و بهتر از هر مصالح دیگر بوسیله بتن  سبک حاصل شود.

بتن سبك ماده اي است با تركيبات جديد و فوق العاده سبك و مقاوم .
مواد تشكيل دهنده بتن سبك عبارت است از ورموكوليت، پرليت، سنگ بازالت و سيمان تيپ 2 و ...
در اين بتن همانند بتن هاي عادي ، از ماسه استفاده نمي شود.
عدم وجود ماسه باعث سبك و همگن شدن ساختار بتن گرديده و باعث مي شود كه مواد تشكيل دهنده كه تقريبا" از يك خانواده مي باشند و بهتر همديگر را جذب كنند .
ساختمان اين بتن متخلخل بوده و اين مسئله پارامتر بسيار موثري است. چون تخلخل موجود در بتن باعث مقاوم شدن در برابر زلزله و عايق شدن در برابر صدا ، گرما و سرما مي گردد .
تركيبات اين بتن به گونه اي عمل مي كند كه حالت ضد رطوبت به خود گرفته و به مانند بتن معمولي كه جذب آب دارد عمل نكرده و آب را از خود دفع مي كند .

اين بتن تحت فشار مستقيم (پرس) ساخته مي شود .
بدليل شكل گيري بتن در فشار، ساختار آن دارا ي يكپارچگي قابل قبولي است .
بتن سبك در قالبهاي طراحي شده توسط متخصصين ، بصورت يكپارچه ريخته مي شود .
بدليل يكپارچگي در نوع ساختمان بتن ، قطعه توليدي از استحكام بالايي برخوردار شده و مقاومت بالايي نيز در برابر زلزله از خود نشان خواهد داد .
براي تقويت اين بتن از يك يا چند لايه شبكه فلزي در داخل بتن استفاده شده كه اين حالت همانند مسلح كردن بتن معمولي بوسيله ميلگرد مي باشد .
هزينه توليد اين نوع بتن از ديگر مواد ساختماني به نسبت ويژگي آن پايينتر است.
زمان بسيار كمتري جهت توليد ديوار هاي بتني سبك يا قطعات ديگر لازم است .
پرت مواد اوليه جهت توليد بتن سبك بسيار كمتر از بتن معمولي است. چون تمام مراحل توليد در محل مشخصي صورت گرفته و جهت توليد پروسه اي طراحي گرديده است .
بدليل طراحي كليه مراحل توليد و وجود نظارت بر تمامي اين مراحل ماده توليدي داراي استاندارد خاصي تعريف شده است . (مهندسي ساز)
خريد مصالح بطور عمده صورت مي گيرد و هزينه كمتري براي سازنده در بر خواهد داشت و در نهايت خانه پيش ساخته با قيمت پائين تري عرضه مي گردد .
قطعات توليدي در كارخانه از آزمايشات كنترل كيفيت گذر كرده و در صورت تائيد به بازار مصرف
عرضه مي گردد .
بتن سبك مسطح بوده كه مي توان با يك ماستيك كاري ساده بر روي آن رنگ آميزي كرد.

 

مصالح سازه ای طبیعی :

چوب:چوب از جمله مصالح سبک سازه ای که تجربه های موفقی  د راکثر کشور های جهان داشته است.

مصالح چوبی:چوب به عنوان یکی از مصالح ساختمانی دارای چند خاصیت با ارزش است مقاومت نسبی بالا مقدار چگالی کم ورسانایی کم در عین حال چوب چندین نقطه ضعف نیز دارد.در مقطع عرض دارای خواص متفاوت ا زجهات مختلف دادر.هم چنین  چوب دراری قابلیت پوسیدن و اشتعال است.چوب سنگین تر معمولا مقاوم تر است بار بیشتری را تحمل میکند قابلیت هدایت حرارتی چوب کم است.وبه این دلیل برای ساختن عایق حرارتی مناسب است.چوب از لحاظ مصرف به اشکال مختلف چب های بریده شده  چوب های ورقه ای وچوب های گرد تقسیم بندی میشوند.چوب های گرد:ضخامت بین 14_34سانتی متر ودرازای 8/1_7/ متر دارندوبه دودسته گردبینه وتیر تقسیم میشوند

مصالح سبک صنعتی:

یکی از روش های سبک سازی ساختمان ها کاهش وزن تیغه های بار بر در ساختمان است.یکی از روش های نیمه پیش ساخته  روش ساخت وساز به کمک پانل ها ی ساندویچی پیش ساخته تردی  را نام بردکه با نام  های تجاری مختلف از قبیل :پوما سپ وسیلانوبا این روش تا دو طبقه ساختمان با استفاده از باربری قطعات مورد نظر ساخته میگردد.

 

تاريخچه ساخت و کاربرد بتن سبک


اولين گزارشهاي تاريخي در مورد کاربرد بتن سبک و مصالح سبک وزن به روم باستان بر مي گردد. روميان در احداث معبد پانتئون و ورزشگاه کلوزيوم از پوميس که نوعي مصالح سبک است استفاده کرده اند. همانطور که می دانيم بتن سبک می تواند به صورت های مختلفی طبقه بندی شود ، مثلا" سازه ای و غير سازه ای . از اين نوع طبقه بندی می توان کاربردها را حدس زد . اما گاه از طبقه بندی ديگری استفاده می نمائيم مثل بتن سبکدانه ، بتن اسفنجی و بتن فاقد ريز دانه . در اين نوع طبقه بندی ظاهرا" نمی توان کاربردها را حدس زد .
• ساخت قطعاتی است که صرفا" جنبه پر کننده دارند . در نوع سازه ای نيز دو نوع بتن داريم : مسلح و غير مسلح . مثلا" اجزاء سازه ای غير مسلح مثل بلوکهای ساختمانی را بايد از اين جمله موارد دانست . بتن سبکدانه ای سازه ای مسلح کاربردهائی شبيه بتن معمولی مسلح دارد و حتی ممکن است پيش تنيده هم باشد .

کاربرد بتن سبکدانه پس از توليد سبکدانه هاي مصنوعي و فراوري شده در اوايل قرن بيستم وارد مرحله جديدي شد.

در سال 1918، S. J. Hayde با استفاده از کوره دوار اقدام به منبسط کردن رس و شيل کرد و بدينوسليه سبکدانه اي مصنوعي توليد کرد که از آنها در ساخت بتن استفاده شد. توليد تجاري روباره هاي منبسط شده نيز از سال 1928 آغاز گرديد.
اين سبكدانه مصنوعي در هنگام جنگ جهاني اول به دليل محدوديت دسترسي به ورق فولادي براي ساخت كشتي بكار رفت. كشتي Atlantus به وزن 3000 تن كه با بتن سبك هايديتي ساخته شد، در اواخر سال 1918 به آب افتاد. در سال 1919 كشتي Selma به وزن 7500 تن و طول 132 متر با همين نوع بتن ساخته و به آب انداخته شد. تا آخر جنگ جهاني اول و سپس تا سال 1922 كشتي ها و مخازن شناور متعددي ساخته شد كه يكي از آن ها Peralta تا سال هاي اخير شناور بود.
برنامه ساخت كشتي ها در اواسط جنگ جهاني دوم متوقف شد و دوباره به دليل محدوديت توليد ورق فولادي مورد توجه قرار گرفت. تا پايان جنگ جهاني دوم 24 كشتي اقيانوس پيما و 80 بارج دريايي ساخته شد كه ساخت آن ها در دوران صلح، اقتصادي محسوب نمي گشت. ظرفيت اين كشتي ها 3 تا 140000 تن بود.
در سال 1948 اولين ساختمان با استفاده از شيل منبسط شده در پنسيلوانياي شرقي احداث گرديد. در ادامه، از سال 1950 ساخت بتن سبک گازي اتوکلاو شده در انگلستان متداول شد. اولين ساختمان بتن سبکدانه مسلح در اين کشور که يک ساختمان سه طبقه بود در سال 1958 و در شهر برنت فورد احداث گرديد.
ساختمان هتل پارك پلازا در سنت لوئيز، ساختمان 14 طبقه اداره تلفن بل جنوب غربي در كانزاس سيتي در سال 1929 از جمله ساختمان هاي دهه 20 و 30 ميلادي ساخته شده در آمريکاي شمالي با استفاده از بتن سبک هستند. ساختمان 42 طبقه در شيكاگو، ترمينال TWA در فرودگاه نيويورك در سال 1960، فرودگاه Dulles در واشنگتن در سال 1962، كليسايي در نروژ در سال 1965، پلي در وايسبادن آلمان در سال 1966 و پل آب بر در روتردام هلند در سال 68 از جمله ساختمان هايي هستند كه با بتن سبكدانه ساخته شده اند.
در هلند، انگلستان، ايتاليا و اسكاتلند نيز در دهه 70 و 80 پل هايي با دهانه هاي مختلف ساخته و با موفقيت بهره برداري شده اند. در سال هاي 1970 ساخت بتن سبكدانه پرمقاومت آغاز شد و در دهه 80 به دليل نياز برخي شركت هاي نفتي در امريكا و نروژ براي ساخت سازه ها و مخازن ساحلي و فراساحلي مانند سكوهاي نفتي يك رشته تحقيقات وسيع براي ساخت بتن سبكدانه پرمقاومت در اين دو كشور با هدايت واحد آغاز شد كه نتايج آن در اواخر دهه 80 و اوايل دهه 90 منتشر گشت.
در ساليان اخير نيز استفاده بتن سبک در دال سقف ساختمانهاي بلند مرتبه، عرشه پلها و ديگر موارد مشابه و همچنين کاربردهاي خاص مانند عرشه و پايه دکلهاي استخراج نفت کاربرد فراواني يافته است.

بزرگترين بنای بتن سبکدانه ، يک ساختمان اداری 52 طبقه در تکزاس با ارتفاع 215 متر می باشد.

خواص فوق العاده بتن سبک

 -         کاهش وزن مرده ساختمان

-         کاهش هزينه سرمايه گذاري در اسکلت فلزي

-         کاهش هزينه ساخت و افزايش بهره وري

-         مقاومت بسيار بالا در برابر آتش سوزي

-   کاهش سرمايه گذاري تجهيزات برودتي و حرارتي

-         کاهش مصرف انرژي .

-         افزايش چشم گير مقاومت حرارتي و صوتي

-         تکميل سريعتر پروژه ها و سازه ها

ما با توجه به امکانات و محدوديتها در توسعه روشها و استفاده از مواد ارزان قيمت و قابل دسترس براي تهيه مصالح ساختماني مناسب سعي و تلاش زيادي كرده ايم. عوامل ذيل براي رسيدن به اين مهم تعيين كننده بوده اند :

-         فن آوري بکار گرفته شده ساده و قابل استفاده در همه نقاط باشد

-         به سرمايه گزاري زيادي نياز نباشد.

-         نيروي كار ساده و غير ماهر استفاده شود.

-         حداقل ضايعات توليد گردد و با محيط زيست همخواني داشته  و آلودگي ايجاد ننمايد

-         حتي الامكان از ضايعات براي توليد استفاده گردد.

-         مصرف انرژي را به حداقل برساند.

-         اجرا و عمليات ساختماني را تسريع نمايد.

-         ساختمانها و منازل ساخته شده از اين مواد ، مقاوم ، سبك و راحت باشند.

-         در مقايسه با ساير مواد و مصالح ساختمان از نظر قيمت قابل رقابت باشد.

بديهي است که کيفيت محصول به دست آمده اثر عمده اي در سبک سازي مصالح ساختماني کشور خواهد گذاشت ، بخصوص كه کاهش وزن کل ساختمان در کشور زلزله خيز ايران از اهميت ويژه اي برخوردار مي باشد.                                                                                  

 عيب بتن سبك :

عيب هاي بتن سبك بيشتر در مورد قطعات پيش ساخته از اين بتن مي باشد مانند : مشکلات اتصال اعضاء سازه اي به همديگر ، نياز به گروه نصاب متخصص ، نگهداري تخصصي ، مشکل نصب اجزاء غير سازه اي به ديوارها

ولي مهمترين و عمده ترين عيب بتن ذكر شده :

كم بودن مقاومت بتن سبك عامل مهمي در محدود نمودن دامنه كاربرد اين نوع بتن و بهره گيري از امتيازات آن بوده است

 كاربرد بتن سبك :

بتن سبك در بعضي ازسازه ها كه نمونه هايي از آن در زير آمده است  به كار رفته است

ترمينال TWA در فرودگاه نيويورك در سال 1960، فرودگاه Dulles در واشنگتن در سال 1962، كليسايي در نروژ در سال 1965، پلي در وايسبادن آلمان در سال 1966 و پل آب بر در روتردام هلند در سال 68 از جمله ساختمان هايي هستند كه با بتن سبكدانه ساخته شده اند.

بزرگترين بنای بتن سبکدانه ، يک ساختمان اداری 52 طبقه در تکزاس با ارتفاع 215 متر می باشد.

همچنين به دليل استفاده كم در ايران اين نوع بتن را به صورت پانل هاي آماده كه در شكل آمده شده در وبلاگ نشان داده شده است .

در ساليان اخير نيز استفاده بتن سبک در دال سقف ساختمانهاي بلند مرتبه، عرشه پلها و ديگر موارد مشابه و همچنين کاربردهاي خاص مانند عرشه و پايه دکلهاي استخراج نفت کاربرد فراواني يافته است.

  معايب ساختمان هاي ساخته شده با  بتن سبک

 اين  ساختمانها داراي مشکلات ويژه اي هستند که به اختصار ميتوان به نمونه هاي زير اشاره نمود .

۱-مشکلات اتصال اعضاء سازه اي به همديگر

۲-مشکلات حمل و نقل

۳- مشکلات درز بندي اتصالات

۴- نياز به گروه نصاب متخصص

۵- نگهداري تخصصي

۶- وزن بسيار زياد

۷- مشکل نصب اجزاء غير سازه اي به ديوارها

 معايب بتن هاي سبک

  شايد يکي از مهمترين يا شايد تنها ترین عيب بتن سبک مقاومت کم آنها مي باشد که در زير چگونگي بر طرف کردن اين عيب نيز آمده است

 اثر ميكروسيليس ها در افزايش مقاومت بتن سبک

 كم بودن مقاومت بتن سبك عامل مهمي در محدود نمودن دامنه كاربرد اين نوع بتن و بهره گيري از امتيازات آن بوده است براي بدست آوردن بتن سبك با مقاومت زياد روشهاي زيادي مورد توجه قرار گرفته است .

نكته : عامل موثر و مشترك در كليه اين پژوهشها مصرف ميكروسيليس در بتن مي باشد . در اينجا اجمالا به چند روش اشاره مي گردد :

1- تحقيقات مشترك V.Novokshchenov و W.Whitcomb جهت افزايش مقاومت بتن سبك و بهبود ديگر خواص آن با استفاده از سبكدانه هاي سيليسي منبسط شده ، به اعتقاد آنان مقاومت بتن سبك تابعي از مقاومت سبكدانه ها و ملات است كه اين رابطه به صورت ذيل ارائه گرديد .

fc = fm (vm)+fa (1-vm)

fc = مقاومت بتن    fa = مقاومت سبكدانه

fm = مقاومت ملات  vm = حجم نسبي ملات

بدين ترتيب مشاهده مي شود كه مي توان با افزايش مقاومت سبكدانه و مقاومت و حجم ملات مقاومت بتن سبك را افزايش داد .

طبقه بندی بتن های سبک

 طبقه بندي بتن هاي سبك بر حسب نوع كاربرد آنها :

 - بتن سبك بار بر ساختمان

-  بتن مصرفي در ديوارهاي غير بار بر

-  بتن عايق حرارتي

 نكته 1- طبقه بندي بتن سبك بار بر طبق حداقل مقاومت فشاري انجام مي گيرد .

مثال : طبق استاندارد 77 – 330 ASTM C در بتن سبك ---- مقاومت فشاري بر مبناي نمونه هاي استوانه اي استاندارد از    شده پس از 28 روز نبايد كمتر از Mpa 17 باشد . و وزن مخصوص آن نبايد از 1850 كيلوگرم بر متر مكعب تجاوز نمايد كه معمولا بين 1400 او 1800 كيلوگرم بر متر مكعب است .

نكته : 2- بتن مخصوص عايق كاري معمولا داراي وزن مخصوص كمتر از 800 كيلوگرم بر متر مكعب و مقاومت بين 7/0 و Mpa 7 مي باشد .

انواع سبك دانه هايي كه به عنوان مصالح در ساختار بتن سبك استفاده مي شود :

الف -  سبك دانه هاي طبيعي : مانند دياتومه ها ، سنگ پا ، پوكه سنگ ، خاكستر ، توف كه بجز دياتومه ها بقيه آنها منشاﺀ آتشفشاني دارند .

نكته :1- اين نوع سبك دانه ها معمولا بدليل اينكه فقط در بعضي از جاها يافت مي شوند به ميزان  زياد مصرف نمي شوند ، معمولا از ايتاليا و آلمان اينگونه مصالح صادر مي شود .

نكته : 2- از انواعي پوكه معدني سنگي كه ساختمان داخلي آن ضعيف نباشد بتن رضايت بخشي با وزن مخصوص 700 تا 1400 كيلو گرم بر متر مكعب توليد مي شود كه خاصيت عايق بودن آن خوب مي باشد اما جذب آب و جمع شدگي آن زياد است . سنگ پا نيز داراي خاصيت مشابه است .

ب -  سبك دانه هاي مصنوعي : اين سبك دانه ها به چهار گروه تقسيم مي شوند .

- گروه اول : كه با حرارت دادن و منبسط شدن خاك رس ، سنگ رسي ، سنگ لوح ، سنگ رسي دياتومه اي ، پرليت ، اسيدين، ورميكوليت بدست مي آيند .

- گروه دوم : از سرد نمودن و منبسط شدن دوباره كوره آهن گدازي به طريقي مخصوص بدست مي آيد .

- گروه سوم : جوشهاي صنعتي ( سبكدانه هاي كلينكري) مي باشند .

- گروه چهارم : مخلوطي از خاك رس با زباله خانگي و لجن فاضلاب پردازش شده را مي توان به صورت گندوله در آورد تا با پختن در كوره تبديل به سبك دانه شود ولي اين روش هنوز به صورت توليد منظم در نيامده  است.

 طبقه بندی بتن سبک بر مبنای مقاومت

بتن‌هاي سبك از دیدگاه مقاومتی در سه دسته طبقه‌بندي مي‌شوند كه عبارتند از بتن سبك غيرسازه‌اي، بتن سبك سازه‌اي و بتن سبك با مقاومت متوسط که در ادامه به آن پرداخته می شود.بتن سبك غيرسازه‌اي كه معمولاً به عنوان جداسازهاي سبك

 مورد استفاده قرار مي‌گيرد، داراي جرم مخصوص كمتر از 800 كيلوگرم بر مترمكعب است. با وجود جرم مخصوص كم، مقاومت فشاري آن حدود 35/0 تا 7 نيوتن بر ميليمترمربع مي‌باشد. از معموليترين سنگدانه‌هاي مورد مصرف در اين نوع بتن مي توان به پرليت (نوعي سنگ آذرين) و ورميكوليت (ماده‌اي با ساختار ورقه‌اي شبيه ليكا)اشاره کرد.

بتن‌هاي سبك سازه‌اي داراي مقاومت و وزن مخصوص كافي مي‌باشند، به گونه‌اي كه مي توان از  آن‌ها در اعضاي سازه‌اي استفاده کرد. اين بتن‌ها عموماً داراي جرم مخصوصي بين 1400 تا 1900 كيلوگرم بر مترمكعب بوده و حداقل مقاومت فشاري تعريف شده براي آنها 17 نيوتن بر ميليمتر مربع (مگاپاسكال) مي باشد. در بعضي حالات امكان افزايش مقاومت تا 60 نيوتن بر ميليمتر مربع نيز وجود دارد. در مناطق زلزله خيز، آيين‌نامه‌ها حداقل مقاومت فشاري بتن سبك را به 20 نيوتن بر ميليمتر مربع محدود مي‌كنند.

بتن‌هاي سبك با مقاومت متوسط، از لحاظ وزن مخصوص و مقاومت فشاري در محدوده‌اي بين بتن‌هاي سبك غيرسازه ا‌ي و سازه‌اي قراردارند، به گونه‌اي كه مقاومت فشاري آنها‌ بين 7 تا 17 نيوتن بر ميليمترمربع و جرم مخصوص آن‌ها بين 800 تا 1400 كيلوگرم بر مترمكعب مي باشد.

 1-1- بتن سبك غيرسازه‌اي

اين نوع بتن‌ها با جرم مخصوصي معادل 800 كيلوگرم بر مترمكعب و كمتر، به عنوان تيغه‌هاي جداساز و عايق‌هاي صوتي در كف بسيار مؤثر هستند. اين نوع بتن مي‌تواند در تركيب با مواد ديگر در ديوار، كف و سيستم‌هاي مختلف سقف مورد استفاده قرار گيرد. مزيت عمده آن، كاهش هزينه‌هاي لازم براي تهويه‌ي گرمايي يا سرمايي فضاهای داخلی ساختمان و كاهش انتقال صوت بين طبقات و فضاهاي ساختمان مي باشد. بتن‌هاي سبك غيرسازه‌اي بر اساس ساختارداخلي مي‌توانند به دو گروه جداگانه تقسيم‌بندي شوند.

دسته اول بتن‌هاي اسفنجي[1] كه در حين ساخت آن‌ها با ايجاد كف، حباب‌هاي هوا در خمير سيمان يا در ملات سيمان - سنگدانه ايجاد مي گردد. كف مورد نظر يا از طريق مواد كف‌زا در حين اختلاط توليد شده و يا به صورت كف آماده به مخلوط اضافه مي‌شود. بتن اسفنجي مي‌تواند جرم مخصوصي تا حدود 240 كيلوگرم بر مترمكعب داشته باشد.

 دسته دوم بتن با سنگدانه سبك يا به اختصار بتن سبكدانه است که با استفاده از پرليت، ورميكوليت منبسط شده و يا ديگر سبکدانه هاي طبيعي و مصنوعي ساخته مي‌شوند. جرم مخصوص خشك اين مخلوط بين 240 تا 960 كيلوگرم بر مترمكعب مي‌باشد.

امروزه اضافه كردن ريزدانه‌هايي با وزن معمولي، موجب افزايش وزن بتن و مقاومت آن مي شود، ليكن به منظورحصول خواص عايق‌بندي حرارتي (ضريب انتقال حرارت پايين)، حداكثر جرم مخصوص به 800 كيلوگرم در مترمكعب محدود مي‌گردد.

هنگام ساخت و استفاده از بتن سبك غيرسازه‌اي، سعي بر اين است كه با كاهش وزن بتوان خصوصيات عایق حرارتي را افزايش داد، اما ذكر اين مطلب ضروري است كه باكاهش وزن مخصوص بتن، مقاومت آن نيز كاهش مي‌يابد. مقاومت فشاري و وزن مخصوص بتن، ارتباط نزديكي با هم دارند و با افزايش وزن مخصوص، بالطبع بايد مقاومت بالاتري را انتظار داشت. با توجه به مقاومت به دست آمده از اين نوع بتن، محل کاربرد آن تعيين مي گردد. به عنوان مثال بتن‌هايي با مقاومت فشاري حدود 7/0 نيوتن بر ميليمترمربع و كمتر براي عايق‌سازي لوله‌هاي بخار زيرزميني مناسب هستند و از بتن‌هاي با مقاومت بالاتر تا حدود 5/3 نيوتن بر ميليمتر مربع در پياده‌روها استفاده مي شود. بايد توجه داشت كه انقباض بتن‌هاي سبك در هنگام خشك شدن در اكثر موارد و به خصوص در موارد حذف سنگدانه‌هاي درشت از مخلوط، همواره مشكل‌ساز است.

 1-2- بتن سبك با مقاومت متوسط

بتنهای سبک موجود در این طبقه عمدتا از نوع بتنهای سبکدانه و بتنهای با ساختار باز می باشند. به عبارت دیگر برای کاهش چگالی بتن از سنگدانه های سبک طبیعی یا مصنوعی استفاده شده است. سبکدانه های مورد استفاده در بتنهای سبک با مقاومت متوسط معمولا از یکی از روشهای آهكي شدن (تكليس)، سنگدانه‌ي كلينگر، محصولات منبسط شده‌اي نظير روباره‌هاي منبسط شده، خاكستر بادي، شيل و اسليت يا سنگدانه‌هاي توليدي از مصالح طبيعي مانند پوكه سنگ‌هاي آذرين و سنگ‌هاي آذرين متخلخل (توف) توليد مي‌شوند. جرم مخصوص بتن ساخته شده با سنگدانه‌هاي فوق بين 800 تا 1400 كيلوگرم بر مترمكعب است. كاربرد مواد افزودني نظير تسريع كننده‌ها و روان‌كننده‌ها مي‌تواند در تغيير مقاومت بتن‌هاي ساخته شده با سنگدانه‌هاي توليد شده از روش‌هاي مذكور موثر باشد. کاربرد این بتنها معمولا در بلوکهای مجوف بتنی، کف سازیها و موارد مشابه است.

1-3- بتن سبك سازه ای

بتنهای سبک سازه ای بتنهایی هستند که علی رغم دارا بودن چگالی کمتر از 2000 كيلوگرم بر مترمكعب، مقاومت فشاری بیش از 17 مگاپاسکال دارند. ساخت این بتنها صرفا با استفاده از سنگدانه های سبک و مقاوم امکان پذیر است. تمام بتنهای سبک سازه ای از خانواده بتن های سبکدانه می باشند که در آن برای کاهش وزن مخصوص بتن از سنگدانه های سبک استفاده شده است. به این دلیل بعضا از عبارات بتن سبکدانه و بتن سبک سازه ای برای بیان یک مفهوم استفاده می شود. در بتن‌هاي سبكدانه سازه‌اي از سنگدانه‌هايي استفاده مي‌شود كه بتن ساخته شده مقاومتي بيش از 17 مگاپاسکال و جرم مخصوصي كمتر از 2000 كيلوگرم بر مترمكعب را دارا باشد. سنگدانه‌هايي كه اين شرايط را عموماً برآورد مي‌كنند و طبق استاندارد [2] ASTM-C330 براي ساخت بتن سبك سازه‌اي مورد استفاده قرار مي گيرند، عمدتا عبارتند از:

الف) شيل، رس و اسليت منبسط شده در كوره‌ي دوار

ب)سنگدانه هايي که از فرآيند هاي کلوخه ای شدن به دست مي آيند

ج) سرباره‌هاي منبسط شده

د) پوكه‌هاي معدني

هـ) پوكه‌هاي صنعتي

و) خاكستر بادي ته نشين شده

تأمين مقاومت فشاري معادل 20 نيوتن بر ميليمترمربع و بيشتر با بعضي از اين سنگدانه‌ها امكان‌پذير است. شرايط ساير سنگدانه‌ها نيزطوري است كه قادر به حصول حداقل مقاومت فشاري مقرر شده براي بتن سبك سازه‌اي مي‌باشند. همانطور كه پیش از این ذکر شد،‌ مقاومت بتن سبك ‌تابعي از جرم مخصوص آن است. بايد توجه داشت كه جرم مخصوص بتن عمدتاً متأثر از جرم مخصوص سنگدانه‌هاي مصرفي است، به گونه‌اي كه استفاده از مصالح سبكتر موجب كاهش وزن مخصوص بتن مي شود. ولي استفاده از مصالح سنگين‌تر از سبكدانه‌ها، لزوماً باعث افزايش مقاومت بتن ساخته شده نخواهد شد. بيشترين مقاومت بتن سبکدانه معمولا وقتی حاصل می شود که از سبکدانه های ساخته شده از شيل، رس و اسليت منبسط شده در فرآيند كوره دوار برای سبک سازی چگالی بتن استفاده گردد.

مقايسه انواع بتن سبك با آجر و بتن معمولي

 

نوع مصالح ساختماني

وزن مخصوص kg/m3

مقدار مصرف سيمان kg/m3

مقاومت گسيختگي فشاري kg/m3

بتن معمولي   

2200-2700

550

250-800

آجر

1600

-

100

بتن سبك از نوع عايق حرارتي

400-700

90-150

5-10

بتن سبك ساختماني

700-1400

150-240

10-20

بتن سبك مقاوم

1200-1500

270-330

100-200

 

مسائل اجرائي بتن سبكدانه سازه اي

بسياري از اصول اجرائي حاكم بر بتن ريزيهاي معمولي در بتن ريزي با بتن سبــكدانه سازه اي كماكان از اهميت برخوردار است . مسلما" در بتن هاي غير سازه و سبكدانه بسياري از نكات مورد نظر نميتواند با اهميت تلقي شود و عدم رعايت برخي قواعد تا آنجا كه به وزن مخصوص بتن ريخته شده لطمه نزند و آنرا بالا نبرد با اهميت تلقـــي نميشـــود.
اصل پيوستگي و تدوام در بتن ريزي ( عدم ايجاد درز سرد ( ، اصل عدم گيرش يا نزديكي به گيرش در بتن قبل از ريختن و تراكم ، اصل عدم جدا شدگي مواد (نا همگني ( بتن ، اصل رعايت دماي مناسب بتن ريزي ، اصل عدم آلودگي بتن به مواد مضر ، اصل رعايت تراكم صحيح ، اصل رعايت پرداخت صحيح سطح بتن ، اصل انتخاب صحيح اسلامپ با توجه به وضعيت قطعه و وسايل تراكمي موجود ، اصل رعايت و بكارگيري نسبت ها و مقادير صحيح مصالح و پرهيز از مصرف مواد نا مناسب ، و در نهايت اصل عمل آوري صحيح و قالب برداري به موقع و با دقت همواره در اين نوع بتن ريزيها مانند بتن هاي معمولي از اهميت برخوردار مي باشد .

استفاده از مواد مناسب و نسبت هاي صحيح :
بكار گيري مواد و مصالح مناسب طبق مشخصات پروژه ، رعايت مصرف سيمان تازه و غير فاسد از نوع مورد نظر و مطابق با استاندارد مورد قبول كاملا" مهم مي باشد . توزين يا پيمانه كردن دقيق و صحيح مصالح مصرفي طبق طرح اختلاط ارائه شده از اهميت برخوردار است . بهتر است مصالح سنگي مصرفي به ويژه سبكدانه در شرايطي قرار گيرد كه نوسانات رطوبتي اندكي داشته باشد . براي مثال خوبست بدانيم ليكاهاي موجود در ايران ميتواند تا بيش از 30 درصد آب را در خود جذب و نگهداري كند . بنا براين بين سنگدانه كاملا" خشك و كاملا" اشباع تفاوت فاحشي وجود دارد و ميتواند بر اسلامپ حاصله و نسبت آب به سيمان و در نتيجه به مقاومت و دوام بتن سبكدانه سازه اي اثر چشمگيري باقي گذارد . بهر حال اگر بدانيم مثلا" سنگدانه هاي ما حدود 5 درصد رطوبت دارد ميتوانيم مقدار آب مصرفي را تنظيم نمائيم تا به طرح اختلاط مورد نظر دست يابيم .
بايد دانست مشكل بزرگ توليد بتن سبكدانه همين تغيير رطوبت است و لذا كنترل نسبت آب به سيمان در اين بتن ها مشكل مي باشد و حتي مانند بتن هاي معمولي نيز نميتوان با كنترل اسلامپ به نتيجه مورد نظر رسيد .

انتخاب اسلامپ صحيح : مانند بتن هاي معمول انتخاب اسلامپ ميتواند مهم باشد . از نظر جدا شدگي ، آب انداختن ، رسيدن به تراكم مورد نظر با توجه به ابعاد قطعه ، طرز قرارگيري ، وضعيت درهمي ميلگردها ، وسايل تراكمي موجود قابل تأمين اين انتخاب كاملا" معنا دار و با اهميت است . به دليل سبكي سنگدانه ها بويژه سبكدانه هاي درشت احتمال جدا شدگي در بتن شل افزايش مي يابد . لذا اسلامپ هاي بيش از ده سانتي متر ابدا" مطلوب نيست مگر اينكه بتن پر عياري داشته باشيم ، همچنين با وجود موادي مانند ميكرو سيليس ممكنست اين جدا شدگي به حداقل برسد .
بنا براين اگر قرار باشد بتن سبكدانه پمپي با اسلامپ 10 تا 15 سانتي متر را داشته باشيم عيار سيمان بايد از حدود 400 كيلو در متر مكعب فراتر رود . در حاليكه اگر اسلامپ كمتر باشد حداقل عيار سيمان در ACI برابرkg/m3 335 مطرح شده است . در حالات عادي اسلامپ هاي 5 تا 8 سانتي متر براي بتن سبكدانه غير پمپي و اسلامپ 7 تا 10 سانتي متر براي بتن سبكدانه پمپي مطلوب تلقي ميشود بدون اينكه اين اعداد جنبه آئين نامه اي داشته باشد .
تغييرات اسلامپ در طول اجراء در بتن سبكدانه بسيار جدي است . در بتن هاي معمولي نيز اين پديده به چشم ميخورد بويژه وقتي سنگدانه هاي درشت خيلي خشك باشند ممكن است حتي در طول 15 دقيقه پس از ساخت شاهد افت جدي در اسلامپ باشيم . در بتن سبكدانه اين امر به شدت وجود دارد . فرض كنيد اگر در طول 15 تا 30 دقيقه جذب آب سبكدانه 5 تا 10 درصد فرض شود و فقط سبكدانه درشت به ميزان 300 كيلو داشته باشيم 15 تا 30 كيلو آب را جذب مي كند كه كاهش اسلامپ 6 تا 15 سانتي متر را ميتوان شاهد بود . اگر قرار باشد طول مدت حمل و ريختن و تراكم زياد باشد كاملا" دچار مشكل ميشويم . همچنين در بتن هاي پمپي ، اين كاهش و افت در اسلامپ مسئله ساز است . بنا براين سعي ميشود كه چنين پروژه هائي حتي الامكان از 24 ساعت قبل از ساخت بتن ، سبكدانه ها را خيس كرد (Presoaking ) تا آب قابل ملاحظه اي را جذب نمايد و پس از اختلاط بتن شاهد افت اسلامپ زيادي نباشيم . اين خيس كردن ممكن است حتي از سه روز قبل شروع شود ادامه يابد . خيس كردن سنگدانه ممكنست با آب پاشي تحت فشار و بصورت باراني باشد و يا از سيستم خلاء براي نفوذ سريعتر آب به داخل سبكدانه استفاده شود كه در ايران روش ساده اول معمولتر و عملي تر مي باشد . ريختن آب و سبكدانه در مخلوط كن و اضافه كردن سيمان و غيره پس از مدتي تأخير ميتواند به افت اسلامپ كمتر منجر شود .
ميزان جذب آب سبكدانه ها علاوه بر زمان تابع ميزان آب موجود در آن ( رطوبت اوليه ( نيز مي باشد كه پيش بيني جذب آب را در مدت معين دشوار مي كند مگراينكه قبلا" آزمايشهائي را با رطوبت اوليه موجود انجام داده باشيم .
اسلامپ هاي كمتر از 5 سانتي متري نيز كار تراكم را با مشكل مواجه مي سازد و فضاي خالي زيادي را در بتن بهمراه دارد .
بسياري از تحقيقات نشان داده اند مقاومت و دوام بتن هاي سبكدانه كه با سبكدانه خشك ساخته شده اند بهتر از وقتي است كه از سبكدانه قبلا" خيس شده يا اشباع شده استفاده گشته است .

اصل رعايت دماي مناسب : حداقل و حداكثر دماي مجاز و مطلوب در أئين نامه ها مشخص شده است . رعايت اين امر براي بتن سبك سازه اي و با دوام بشدت ضروري است و از اين نظر تفاوتي با بتن معمولي وجود ندارد .
حداقل دماي مجاز 5+ درجه سانتي گراد و حداقل دماي مطلوب 10+ درجه سانتي گراد است . حداكثر دماي مجاز معمولا" 32-30 درجه سانتي گراد تا هنگام گيرش مي باشد و بهتر است از اين حد فاصله معقولي را داشته باشيم . در هواي سرد و گرم كه بتن با دماي مناسب توليد مي شود نبايد در حين اجرا آنقدر تأخير و معطلي بوجود آورد كه با تبادل گرمائي ، دماي مطلوب از دست برود .

اصل همگني ( عدم جداشدگي ) :  اصول جداشدگي و عوامل مؤثر بر آن براي بتن سبكدانه همچون بتن معمولي است ، اما براي بتن سبكدانه يك عامل ديگر يعني اختلاف در چگالي ذرات و خمير سيمان يا ملات ميتواند به جداشدگي منجر گردد . عوامل جداشدگي ميتوانند داخلي باشند كه صرفا" استعداد جداشدگي را بوجود مي آورند و يا عامل خارجي باشند كه مربوط به اجرا هستند و استعداد را شكوفا مي كنند . از عوامل داخلي بالا رفتن حداكثر اندازه سبكدانه مي باشد كه معمولا" باعث جداشدگي ميگردد و بهتر است حداكثر اندازه سبكدانه براي بتن سازه اي به 20 ميلي متر محدود شود و توصيه مي گردد تا از حداكثر اندازه 15 – 12ر ميلي متر استفاده شود . جالب است بدانيم معمولا" با افزايش حداكثر اندازه ، چگالي حجمي خشك ذرات سبكدانه درشت كاهش مي يابد و از اين نظر نيز امكان جداشدگي را قوت مي بخشد .

بالا رفتن اسلامپ به افزايش استعداد جداشدگي منجر مي شود . كاهش ميزان عيار سيمان و مواد سيماني و چسباننده ميتواند بشدت باعث افزايش استعداد جداشدگي گردد . اختلاف وزن مخصوص ( چگالي ( ذرات سبكدانه با خمير سيمان و يا اختلاف چگالي ذرات ريزدانه و درشت دانه به بالا رفتن استعداد جداشدگي منجر مي گردد . بالا رفتن نسبت آب به سيمان به افزايش پتانسيل جداشدگي مي انجامد . درشت تر شدن بافت دانه بندي سنگدانه ها معمولا" امكان جداشدگي را افزايش مي دهد . وجود مواد ريز دانه و چسباننده مانند پوزولان و ميكروسيليس و سرباره ها مي تواند باعث كاهش استعداد جداشدگي بتن سبكدانه گردد ، همچنين بكارگيري مواد حبابزا و ايجاد حباب هوا ميتواند جداشدگي و آب انداختن را كاهش دهد ضمن اينكه رواني و كارآئي مورد نظر تأمين ميگردد .
از عوامل خارجي مي توان حمل نامناسب ، ريختن غلط ، استفاده از شوت هاي طولاني و يا شيب نامطلوب ، برخورد بتن با قالب و ميلگردها ، ريختن بتن از ارتفاع زياد بدون لوله و قيف هادي و يا بدون پمپ معمولا" به جداشدگي منجر ميشود . بخاطر حساسيت جداشدگي در اين بتن ها بايد دقت بيشتري را اعمال نمود . بايد دانست نتيجه جداشدگي در بتن سبكدانه نيز از نظر مقاومتي و دوام بمراتب حادتر و مضرتر از بتن معمولي است .

اصل عدم آلودگي بتن به مواد مضر : در طول حمل و ريختن و تراكم نبايد مواد مضر اعم از مواد ريزدانه رسي ( گل و لاي ( ، مواد شيميايي شامل چربي ها و مواد قندي يا انواع مختلف نمكها و آب شور و غيره با بتن مخلوط شود . مخلوط شدن موادي همچون گچ نيز توجيه ندارد . بهرحال در اين رابطه هيچ تفاوتي بين بتن معمولي و سبكدانه سازه اي وجود ندارد .

اصل عدم كاركردن با بتن در مرحله گيرش : اگر عمليات بتن ريزي با بتني كه در مرحله گيرش است انجام گيرد مقاومت و دوام آن بشدت كاهش مي يابد و نفوذپذيري آن زياد ميشود . از اين نظر بتن مانند ملات گچ زنده است كه اگر آن را مرتبا" بهم بزنيم و ورز دهيم تبديل به ملات گچ كشته ميشود كه بشدت كم مقاومت و كم دوام است ، هرچند گيرش آن به تأخير مي افتد و يا اصلا" خود را نمي گيرد و صرفا" خشك مي شود . بهرحال نبايد بتن را در هنگامي كه در شرف گيرش است مخلوط نمود و يا ريخت و متراكم كرد . از اين نظر بين بتن سبكدانه و بتن معمولي اختلافي احساس نمي گردد .
مسلما" در هواي گرم و يا بتن با دماي زياد ، گيرش زودتر حاصل ميشود . زمان گيرش تابع نوع سيمان ( جنس و ريزي ( ، نسبت آب به سيمان و وجود مواد افزودني مي باشد . براي افزايش زمان گيرش و ايجاد مهلت براي عمليات اجرائي مي توان از بتن خنك ، كار در هنگام خنكي هوا يا شب ، سيمانهاي كندگير كننده استفاده نمود .

اصل پيوستگي و تداوم بتن ريزي ( عدم ايجاد درز سرد در بين لايه ها)  : اگر در هنگام بتن ريزي به هر علت ، لايه زيرين قبل از ريختن و تراكم لايه روئي گيرش خود را انجام داده باشد درز سرد Cold Joint بوجود مي آيد . در اين رابطه فرقي بين بتن سبكدانه و معمولي وجود ندارد . بايد با تجهيز مناسب كارگاه ، افزايش توان توليد و حمل در ريختن و تراكم بتن ، افزايش زمان گيرش بتن و يا ايجاد درزهاي اجرائي مناسب و كاهش سطح بتن ريزي و يا كاهش ضخامت لايه ها امكان ايجاد درز سرد را به حداقل رساند .

تراكم صحيح بتن سبكدانه : از آنجا كه بتن هاي سبكدانه بشدت در معرض جدا شدگي هستند ، تراكم با قدرت زياد و يا مدت بيش از حد مشكلات جدي را بوجود مي آورد . به محض اينكه احساس مي نمائيم كه شيره يا سنگدانه ها شروع به روزدن مي نمايند بايد تراكم را قطع كرد . لرزش ، بيش از فشار و ضربه ميتواند موجب جدا شدگي گردد.
به هر حال بايد كاملا" هواي بتن خارج و فضاي خالي به حداقل برسد تا مقاومت و دوام كافي ايجاد گردد.

پرداخت سطح بتن سبكدانه : آب انداختن بتن همواره مشكل بزرگي در پرداخت نهائي سطح بتن مي باشد و اين امر اختصاص به بتن سبكدانه ندارد . خوشبختانه به دليل جذب آب تدريجـــي توسط سبكدانه ها ، آب انداختن ميتواند به كمترين مقدار برسد اما اگر سبكدانه ها قبل از اختلاط كاملا" اشباع شده باشد امكان آب انداختن بيشتر مي گردد . كم بودن عيار سيمان و مواد چسباننده سيماني ، فقدان مواد ريزدانه ، عدم وجود حباب هوا در بتن ، درشتي بافت دانه بندي ، افزايش حداكثر اندازه سبكدانه ، گردگوشه گي سنگدانه ها و بافت صاف سطح سنگدانه ، بالا بودن اسلامپ ، زيادي نسبت آب به سيمان و ... ميتواند موجب افزايش آب انداختن شود .
وقتي بتن آب مي اندازد بايد اجازه داد آب تبخير گردد و اگر تبخير به سرعت ميسر نمي گردد يا نگران گيرش هستيم بايد سعي كنيم آب روزده را با وسيله مناسبي ( گوني يا اسفنج ( از سطح پاك نمائيم و سپس سطح را با ماله چوبي و بدنبال آن با ماله فلزي يا لاستيكي صاف كنيم .
عدم رعايت اين نكات موجب افزايش نسبت آب به سيمان در سطح و كاهش مقاومت و دوام و افزايش نفوذپذيري بتن سطحي مي گردد .

عمل آوري بتن و سبكدانه : هر چند عمل آوري رطوبتي و حرارتي بتن سبكدانه با بتن معمولي تفاوت چنداني ندارد اما اعتقاد بر اين است كه سبكدانه ها بعلت پوكي و تخلخل و جذب آب ميتوانند در صورت فقدان عمل آوري رطوبتي از ناحيه اجرا كنندگان ، بخشي از آب خود را در اختيار خمير سيمان قرار دهند و توقف شديدي در هيدراسيون سيمان رخ ندهد . اين امر را عمل آوري داخلي بتن سبكدانه مي گويند .

كنترل كيفي بتن سبكدانه : كنترل كيفي بتن سبكدانه شامل بتن تازه و سخت شده است . كنترل رواني ، وزن مخصوص و هواي بتن از مهمترين كنترلهاي بتن تازه است . استفاده از آزمايش اسلامپ ، ميز آلماني ( رواني ( و درجه تراكم براي اين بتن ها پيش بيني شده است . وزن مخصوص بتن تازه سبكدانه متراكم معمولا" كنترل مي شود و در آئين نامه هاي مختلف اختلاف 2 تا 3 درصد مجاز شمرده ميشود ( نسبت به طرح اختلاط ( . هواي بتن را براي بتن سبكدانه نميتوان بكمك روش فشاري بدست آورد و حتما" بايد از روش حجمي بهره گرفت . براي بتن سبكدانه سخت شده ، وزن مخصوص ، مقاومت فشاري ، كششي خمشي و نفوذپذيري ، جذب آب ، جذب موئينه و آزمايشهاي دوام در برابر خوردگي قابل كنترل است .
وزن مخصوص بتن سخت شده سبكدانه بصورت اشباع و خشك اندازه گيري ميشود و گاه بجاي خشك كردن از جمع زدن مقادير اجزاء در هر متر مكعب و افزودن مقداري رطوبت ثابت به آن ، وزن مخصوص بتن سخت شده را بدست مي آورند .
براي تعيين مقاومت فشاري و ساير پارامتر ها تفاوت چنداني بين بتن سبكدانه و معمولي وجود ندارد و شباهت جدي و كامل بين آنها وجود دارد . بهرحال ممكنست در مواردي نتايج حاصله در مقايسه با بتن هاي معمولي گمراه كننده باشد . مثلا" اگر جذب آب بتن سبكدانه را بصورت درصد وزني گزارش كنيم و آنرا با جذب آب بتن معمولي مقايسه نمائيم دچار اشتباه ميشويم و لذا توصيه ميشود جذب آب بتن بصورت درصد حجمي گزارش گردد .


بتن فاقد ريزدانه ( Concrete finez – No ( : اگر سنگدانه هاي درشت تك اندازه را با سيمان و آب مخلوط كنيم و در قالب بدون تراكم بريزيم بتن فاقد ريزدانه و متخلخل بدست مي آيد كه از وزن مخصوص كمتري نسبت به بتن معمولي برخوردار خواهد بود . اگر چگالي سنگدانه ها در حدود معمولي باشد وزن مخصوص بتن فاقد ريزدانه حدود 1600 تا kg/m3 2000 بدست مي آيد اما اگر از سبكدانه درشت استفاده نمائيم ممكنست وزن مخصوص بتن حاصله از kg/m3 1000 كمتر شود ( حتي تا حدود kg/m3 650 ( . بهرحال در هر مورد بتن مورد نظر سبك يا نيمه سبك تلقي مي شود اما اگر سنگدانه معمولي استفاده شود نميتوان آنرا بتن سبكدانه دانست .
مسلما" اگر سنگدانه تك اندازه بكار نرود و حاوي ذرات ريز تا درشت باشد وزن مخصوص بتن حاصل نيز زياد خواهد شد . سنگدانه درشت مصرفي بايد 20-10 ميلي متر باشد و 5 درصد ذرات درشتر و 10 درصد ذرات ريزتر در اين نوع سنگدانه تك اندازه (Singl Size( مجاز است اما بهرحال نبايد ذرات ريزتر از 5 ميلي متر در آن مشاهده گردد . سنگدانه درشت بهتر است پولكي و كشيده و يا بسيار تيزگوشه نباشد . سنگدانه هاي گرد گوشه يا نيمه شكسته براي توليد اين بتن ارجح است .
ساختار بتن فاقد ريزدانه داراي تخلخل ظاهري است و حفرات موجود در بتن با چشم براحتي ديده مي شود كه در اين مجموعه خمير سيمان بايد صرفا" تا حد امكان سنگدانه ها را بهم چسباند و از پر كردن فضاها با خمير سيمان پرهيز شود زيرا وزن مخصوص بالا خواهد رفت . وجود خمير سيمان با ضخامت حدود 1 ميلي متر بر روي سنگدانه ها كاملا" مناسب است .
اگر سنگدانه معمولي بكار رود معمولا" مقدار شن اشباع تك اندازه بين 1400 تا 1750 كيلوگرم مي باشد . حجم اشغالي ذرات شن در حدود 550 تا 700 ليتر در هر متر مكعب است . وزن سيمان مصرفي بين 75 تا 150 كيلو در متر مكعب يا بيشتر است كه حجم آن حدود 25 تا 50 ليتر مي باشد . معمولا" نسبت آب به سيمان مصرفي 4/0 تا 5/0 مي باشد كه افزايش آن مي تواند به شلي خمير سيمان و رواني آن منجر شود كه موجب جداشدگي و پرشدن خلل و فرج مي گردد و بتن مورد نظر حاصل نمي شود . با كاهش نسبت آب به سيمان چسبندگي لازم بوجود نمي آيد و از نظر اجرائي دچار مشكل مي شويم . نسبت وزني سيمان به سنگدانه تا مي باشد . همانطور كه از محاسبات فوق بر مي آيد فضاي خالي اين بتن ( پوكي ( بين 25 تا 40 درصد مي باشد و ابعاد اين فضاها نيز بزرگ است درصد جذب آب بصورت وزني حدود 15 تا 25 درصد است . طبيعتا" با افزايش مقدار سيمان و آب و يا مصرف شن با دانه بندي پيوسته ( Graded Size ( وزن مخصوص بتن بيشتر خواهد شد . توصيه مي شود شن ها قبل از مصرف خيس و اشباع گردند .
طرح اختلاط اين بتن ها بصورت آزمون و خطا خواهد بود و بشدت تابع شرايط ساخت بتن مي باشد . بتن فاقد ريزدانه معمولا" بدون تراكم توليد مي شود و اگر مرتعش يا متراكم شود بسيار جزئي خواهد بود زيرا خمير سيمان ميل به پر كردن فضاي خالي بين سنگدانه ها را خواهد داشت و چسبندگي سنگدانه به يكديگر به حداقل خواهد رسيد .
معمولا" انجام آزمايش كارآئي يا اسلامپ براي اين نوع بتن موردي نخواهد داشت . از آنجاكه سنگدانه تك اندازه مصرف مي شود جداشدگي از نوع جدائي ريز و درشت سنگدانه معنائي ندارد و مي توان آن را از ارتفاع قابل ملاحظه ريخت .
بعلت محدوديت دامنه نسبت آب به سيمان و وجود فضاي خالي قابل توجه در اين نوع بتن ، مقاومت فشاري اين نوع بتن اغلب در حدود 5 تا 15 مگا پاسكال مي باشد و طبيعتا" يك بتن سبك سازه اي تلقي نمي گردد و بصورت مسلح مصرف نمي شود . برخي اوقات سعي مي كنند ميلگردها را با يك لايه ضد خوردگي ( پوشش مناسب ( آغشته كنند و سپس در بتن فاقد ريزدانه بكار برند . اگر از سبكدانه براي ساخت اين بتن استفاده شود ، مقاومت فشاري آن 2 تا 8 مگا پاسكال مي باشد .
جمع شدگي بتن هاي فاقد ريزدانه بمراتب كمتر از بتن معمولي است زيرا مقدار سنگدانه در مقايسه با خمير سيمان زياد است و يقه قابل توجه بوجود مي آورد . بتن فاقد ريزدانه سريعا" خشك مي شود زيرا خمير سيمان در مجاورت هواي موجود و فضاي خالي است و علي القاعده در ابتدا از جمع شدگي بيشتري نسبت به بتن معمولي برخوردار مي باشد و عمل آوري آن از اهميت برخوردار است . قابليت انتقال حرارتي آن بمراتب از بتن معمولي با سنگدانه مشابه كمتر است ( حدود تا ( كه با افزايش رطوبت و اشباع بودن اين بتن ، اين قابليت انتقال حرارت افزايش مي يابد .
مدول الاستيسيته اين بتن ها بين 5 تا Gpa20 است ( براي مقاومت هاي 2 تا 15مگا پاسكال ( . نسبت مقاومت خمشي به فشاري حدود 30 درصد است كه از نسبت مقاومت خمشي به فشاري بتن هاي معمولي بيشتر مي باشد . ضريب انبساط حرارتي اين نوع بتن در حدود تا بتن معمولي است . نفوذپذيري زياد از مزايا و شايد معايب اين نوع بتن است . اما نكته مهم آنست كه موئينگي در اين نوع بتن كم تا ناچيز مي باشد . اگر اشباع از آب نباشد در برابر يخبندان مقاوم است . بعنوان يك نفوذپذير زهكش و تثبيت شده و همچنين يك مسير درناژ و مقاوم بسيار مفيد است . بازي كردن لايه هاي قلوه سنگ و شن درشت و متوسط يا ريز بعنوان زهكش يا بلوکاژ و فيلتر از مشكلات اجرائي محسوب مي شود بويژه اگر بخواهد باربر باشد يكي از معدود راههاي حل مشكل ، استفاده از بتن فاقد ريزدانه است و در اين حالت مسئله سبكي زياد مهم نيست .
اين نوع بتن مانند بسياري از بتن هاي سبك مي تواند جاذب صوت باشد ( نه عايق صوت ( و براي اين منظور نبايد سطح اين بتن با اندودي پوشانده شود .
اندودكردن اين بتن بسيار خوب و ساده انجام مي شود . استفاده از اين بتن براي روسازي و پياده رو سازي اطراف درختان و يا پاركينگ ها بسيار مفيد است ( بدليل نفوذپذيري ( . در ديوارهاي باربر با طبقات كم مي توان از اين نوع بتن استفاده نمود . براي ايجاد نفوذپذيري بعنوان لايه اساس يا زير اساس ميتواند بطور مؤثر عمل نمايد . همچنين بعنوان يك لايه بتن مگر نفوذپذير مناسب است در زير دال كف يا شالوده منابع آب بتني نيز از اين بتن مي توان استفاده نمود .

طرح اختلاط بتن سبکدانه ( سازه اي و غير سازه اي ) در طرح اختلاط هر نوع بتن ابتدا بايد خواسته ها را بررسي و فهرست نمود که در مورد بتن سبک نيز اين خواسته ها عبارتند از : مقاومت فشاري در سن مورد نظر ، وزن مخصوص بتن تازه و خشک ، دوام بتن در شرايط محيطي يا سولفاتي ، اسلامپ و کارآئي بتن ، مقدار حباب هواي لازم با توجه به حداکثر اندازه وشرايط محيطي ، و احتمالا" موارد ديگري همچون مدول الاستيسيته يا خواص فيزيکي مکانيکي ديگر مثل قابليت انتقال حرارت و غيره ، در کنار اين موارد ممکنست محدوده دانه بندي مطلوب ( بويژه در روشهاي اروپائي ( از جمله محدوديت ها و خواسته ها باشد .
- در کنار اين خواسته ها ، داده هائي نيز بر اساس اطلاعات موجود از سيمان ، سنگدانه و ... در دست است و يا بايد در آزمايشگاه بدست آيد از جمله اينها مي توان به موارد زير اشاره نمود :
نوع سيمان ، حداقل و حداکثر مجاز مصرف سيمان ، حداکثر مجاز نسبت آب به سيمان ، نوع مواد افزودني مورد نظر و مشخصات آن ، نوع سنگدانه درشت و ريزدانه ، شکل و بافت سطحي سنگدانه ها ، چگالي و جذب آب سبکدانه ها و سنگدانه هاي معمولي ، رژيم و روند جذب آب سبکدانه ، وزن مخصوص توده اي سنگدانه درشت متراکم با ميله ( در طرح امريکائي ( ، دانه بندي سنگدانه ها و حداکثر اندازه آنها ، ويژگيهاي مکانيکي و دوام سنگدانه ها ، مدول ريزي سنگدانه ها و ريزدانه ها ( بويژه در روش امريکائي ( ، چگالي ذرات سيمان و افزودنيها : گاه لازمست دانه بندي يا مدول ريزي سبکدانه ها معادل سازي شود يعني با توجه به اختلاف در چگالي ذرات ، دانه بندي وزني به دانه بندي و مدول ريزي حجمي تبديل گردد که در اين حالت لازمست براي چگالي ذرات هر بخش اندازه اي را تعيين کنيم .

روش طرح اختلاط و جداول و اطلاعات ضروري در هر روش : معمولا" در هر نوع روش طرح اختلاط لازمست حدود مقدار آب آزاد با توجه به کارآئي ، حداکثر اندازه سنگدانه و شکل آن فرض گردد و بدست آيد . نسبت آب به سيمان از جداول راهنما يا تجربيات گذشته و شخصي فرض مي گردد . پس مقدار سيمان در اين صورت مشخص مي گردد . هر چند گاه در طرح اختلاط بتن سبک ابتدا عيار سيمان فرض شده و با در نظر گرفتن نسبت آب به سيمان يا کارآئي ، مقدار آب مشخص مي شود .
اختلاف عمده روش ها در تعيين مقدار سنگدانه ها خواهد بود و بويژه در طرح مخلوط بتن سبکدانه يا نيمه سبکدانه ، اختلافات موجود روشها براي بتن معمولي ، بيشتر مي گردد .
در روشهاي اروپائي ( آلماني و اتحاديه بتن اروپا ( با توجه به محدوده مطلوب دانه بندي حجمي، سهم سنگدانه هاي ريز و درشت ( خواه هر دو سبکدانه يا يکي از آنها سبکدانه باشد ( بدست مي آيد، سپس چگالي متوسط سنگدانه ها تعيين شده و در فرمول حجم مطلق قرار مي گيرد و مقدار کل سنگدانه بدست مي آيد .
اگر افزودني داشته باشيم حجم افزودني از تقسيم وزن به چگالي آن بدست مي آيد و در رابطه قرار داده مي شود .
پس از تعيين با توجه به سهم هر سنگدانه ، وزن آن مشخص مي گردد و با توجه به ظرفيت جذب آب هر نوع سنگدانه مي توان وزن خشک هر کدام و آب کل را تعيين کرد . وزن مخصوص بتن تازه نيز از جمع اوزان اجزاء بتن بدست مي آيد ( بصورت محاسباتي ( در عمل پس از ساخت مخلوط آزمون با توجه به نتيجه محاسبات و اطلاعات حاصله مانند اسلامپ ، کارآئي و مقاومت و وزن مخصوص بتن ميتوان اصلاحات لازم را در محاسبات به انجام رسانيد و طرح اختلاط را نهائي کرد. امريکائي ها نيز در ACI 211.1 و ACI 211.2 و ACI 213 R سه روش را براي طرح اختلاط بتن سشبکدانه و يا نيمه سبکدانه توصيه نموده اند :

1. روش حجم مطلق : در اين روش عملا" پس از تعيين آب آزاد ، سيمان ، سنگدانه درشت خشک و اشباع ، ازفرمول حجم مطلق استفاده نموده و وزن ماسه اشباع با سطح خشک بدست مي آيد . اين روش براي بتن معمولي ، نيمه سبکدانه و تمام سبکدانه قابل اجراست . مشکل عمده در اين حالت تعيين مقدار چگالي اشباع با سطح خشک سبکدانه ها و ظرفيت جذب آب آنهاست . علاوه بر آن عملا" يک اشکال مفهومي نيز در اين حالت وجود دارد و آن اينکه آيا اصولا" در هنگام ريختن و گيرش بتن ، سبکدانه ها به مرحله اشباع با سطح خشک رسيده اند که بتوان از چگالي اشباع با سطح خشک آنها براي تعيين حجم اشغال آنها در بتن استفاده نمود . از آنجا که تفاوت حالت واقعي با فرضي گاه خيلي زياد است . استفاده از اين روش بويژه اگر قرار باشد وزن اشباع با سطح خشک و چگال مربوط در فرمول حجم مطلق بکار رود محل تأمل است مگر اينکه از يک چگالي يا وزن ديگر با توجه به جذب آب واقعي در اين حالت استفاده نمود که روش بسيار دقيقي حاصل مي گردد . امروزه سعي شده است با اين روش به طرح اختلاط مناسب دست يافت . مثلا" در روش هاي اروپائي که اين مشکل وجود دارد سعي مي شود از جذب آب و چگالي نيم ساعته ، 1 ساعته يا 2 ساعته و حتي 4 ساعته استفاده گردد.
آنچه در اينجا اهميت دارد آنست که در هنگام گيرش نسبت آب به سيمان واقعي چقدر است و با دانستن اينکه آبهاي موجود در بتن ، در سنگدانه يا خمير سيمان است به اين نتيجه رسيد که آب آزاد واقعي چيست و چقدر مي باشد . مسلما" کارآئي و اسلامپ را آب آزاد مربوط به زمانهاي کوتاهتر مثل 15 دقيقه يا 30 دقيقه تعيين مي کنند . اين امر مستلزم آنست که رژيم جذب آب سبکدانه را بدانيم و در هر حالت چگالي سبکدانه را محاسبه کنيم .

2. روش حجمي ( Volumetric) :
در روش حجمي از يک مخلوط آزمون با مقادير تخميني استفاده مي شود ( آب ، سيمان ، سنگدانه ريز و درشت ( . پس از ساخت مخلوط آزمون و انجام آزمايشهاي لازم مانند : اسلامپ ، درصد هوا و وزن مخصوص بتن تازه و مشاهده قابليت تراکم ، ماله خوري و کارآئي ، خصوصيات ديگر نيز مي تواند در زمانهاي بعد بدست آيد ( مثل مقاومت و ..... ( . اما پس از ساخت بتن و اندازه گيري وزن مخصوص بتن تازه ، با توجه به وزن مصالح مورد استفاده در ساخت بتن ، حجم بتن حاصله تعيين مي شود . حجم محاسباتي بتن نيز قبلا" مشخص شده است و لذا و اصلاح در مخلوط براي يکي شدن اين ها صورت مي گيرد . مسلما" بايد اهداف مقاومتي و دوام نيز تأمين گردد . در اينجا نيز مشکل چگالي ذرات و جذب آب وجود دارد که معمولا" رطوبت و چگالي موجود مد نظر قرار مي گيرد . لازم به ذکر است که اين روش براي بتن هاي نيمه سبکدانه و تمام سبکدانه کاربرد دارد. همچنين در اين روش از حجم سنگدانه ها بصورت شل استفاده مي گردد .

3. روش وزني يا فاکتور چگالي ( Weight Method or Specificgravity factor Method ) :

اين روش صرفا" براي سبکدانه درشت و ريز دانه معمولي کاربرد دارد يعني صرفا" براي بتن نيمه سبکدانه مورد استفاده قرار مي گيرد . در اين روش از فاکتور چگالي بجاب چگالي ذرات سبکدانه استفاده مي شود . فاکتور چگالي تعريف خاصي است که فقط در ACI 211.2 ( در ضميمه A ( آمده است و با تعريف چگالي تفاوت دارد . S فاکتور چگالي بصورت زير مي باشد. C وزن سبکدانه ( خشک يا مرطوب ( و B وزن پيکنومتر پر از آب و A وزن پيکنومتر پر از آب و سبکدانه مي باشد.
بنابراين در اين تعريف وضعيت رطوبتي مشخص نيست و ميتواند از حالت خشک تا کاملا" اشباع انجام شود اما بايد وضعيت رطوبتي در هر مورد گزارش شود يعني بگوئيم فاکتور چگالي براي سبکدانه اي با رطوبت معين برابر S مي باشد . با توجه به روند معمولي طرح اختلاط امريکائي ، مقدار آب آزاد ، نسبت آب به سيمان ، مقدار سيمان ، وزن سبکدانه درشت خشک و مرطوب بدست مي آيد که در اين رابطه مدول زيري ماسه و حداکثر اندازه سنگدانه ها و کارآئي مورد نياز کاربرد دارد . جذب آب سبکدانه مي تواند طبق دستورهاي استاندارد موجود و يا ضميمه B مربوط به ACI 211.2 مشخص شود که بر اين اساس آب کل بدست مي آيد . در اين روش نيز باتوجه به وزن يک متر مکعب بتن مقدار ماسه بدست مي آيد و بتن مورد نظر با اصلاحات رطوبتي ساخته شده و حک و اصلاح لازم بر روي مقادير بدست آمده صورت مي گيرد تا بتن مطلوب حاصل شود .

 

روش هاي كلي توليد بتن سبك :

-روش اول : از مصالح متخلخل سبك با وزن مخصوص ظاهري كم بجاي سنگدانه معمولي كه تقريبا داراي چگالي 6/2 مي باشد استفاده مي كنند .

-  روش دوم : بتن سبك توليد شده در اين روش بر اساس ايجاد منافذ متعدد در داخل بتن يا ملات مي باشد كه اين منافذ بايد به وضوح از منافذ بسيار ريز بتن با حباب هوا متمايز باشد كه بنام بتن اسفنجي ، بتن منفذ دار و يا بتن گازي يا بتن هوادار مي شناسند .

- روش سوم : در اين روش توليد ، سنگدانه ها ي ريز از مخلوط بتن حذف مي شوند . بطوريكه منافذ متعددي بين ذرات بوجود مي آيد و عموما از سنگدانه هاي درشت با وزن معمولي استفاده مي شود . اين نوع بتن را بتن بدون سنگدانه ريز مي نامند .

نكته : كاهش در وزن مخصوص در هر حالت به واسطه  و جود منافذ يا در مصالح يا در ملات و يا در فضاي بين ذرات درشت موجب كاهش مقاومت بتن مي شود

فن آوري توليد بتن سبك 

كف مورد نياز براي توليد بتن سبك در دستگاه خاصي به عنوان كف ساز (فوم ژنراتور) توليد مي شود فوم توليد شده در داخل همزن (ميكسر) با سيمان ، آب و در صورت نياز  ماسه تركيب مي شود

پس از اينكه تركيب به صورت كامل آماده شد بتن آماده شده را ميتوان با توجه به نياز مشتري به اشكال مختلف در قالب هاي مورد نظر ريخت براي اينكه بتن سبك به گيرش لازم براي استفاده در سازه ها برسد پس از گيرش اوليه بتن سبك را  ميتوان براي اينكه آمادگي استفاده در سازه ها را داشته باشد از غالب خارج نموده و توسط خط بخار دهي و يا در دماي محيط به استحكام  لازم بتن رساند.

كلا روش عمل آوري بتن سبك شبيه بتن معمولي مي باشد. بديهي است در صورت استفاده از ديگ بخار سرعت خشك شدن بتن بيشتر از دماي محيط است. ويژگيهاي كيفي محصولات بتني با اسفاده از روش مورد اشاره تفاوت خاصي با ساير روشهاي توليد بتن سبك اعم از گازي (كه از روش اتوكلاو استفاده ميكنند) تفاوتي ندارد همانطور كه توضيح داده شد روش توليد بتن كفي و تجهيزات توليد آن به مراتب ساده تر از ساير روشهاي توليد بتن سبك در جهان ميباشد علاوه بر اين محصولات توليدي آن 50-30 درصد (بستگي به بهاي سيمان در بازار دارد) ارزانتر از بهاي بتنهاي سلولي گازي ميباشد. اين نوع بتن با نام هبلكس به بازار عرضه مي شود. هزينه سرمايه گذاري در توليد بتن سبك به مراتب ارزانتر (10تا 15 برابر) از بتن گازي ميباشد. اين ويژگي يكي از عوامل تعيين كننده در انتخاب روش توليد بتن ميباشد ميزان مصرف مايع اوليه توليد كف با توجه به وزن بتن سبك توليد شده از50/1 50/2 ليتر در هر متر مربع مي باشد. اين مايع از نظر زيست محيطي خنثي و غير قابل اشتعال و كاملا با محبط زيست سازگار است بهاي كنوني مايع توليد فوم 10000 ريال مي باشد همان طور كه قبلا توضيح داده شد مصالح مورد نياز براي توليد بتن  سبك سيمان ، ماسه ، آب، مايع توليد كف مي باشد

اين فن آوري امكان توليد مصالح ساختمانهاي بتني را مي دهد كه عايق حرارتي و صوتي بسيار خوبي مي باشد.  توان توليد محصولات با وزن بين 1200-300 كيلو در متر مكعب بتن سبك با مقاومت فشاري متفاوت امكان پذير مي باشد 

امكانات مورد نياز براي توليد خط بتن سبك :

 1-     فضا براي نگهداري ماسه

2-     نوار نقاله جهت حمل ماسه

3-     سيلوي ماسه و وسيله اندازه گيري خروجي آن

4-     سيلوي سيمان و وسيله اندازه كيري خروجي آن

5-     دستگاه توليد كننده كف

6-     تجهيزات توليد بتن سبك

7-     واحد استقرار قالب ها


برچسب‌ها: بتن سبک, تاریخچه, خواص ویژگی معایب, بتن

تاريخ : چهارشنبه بیستم فروردین 1393 | 16:57 | نویسنده : زهرا - دانلود رایگان
تاریخچه ی ادواری بتن از بتن اولیه تا بتن پیشرفته

تاریخچه ی ادواری بتن از بتن اولیه تا بتن پیشرفته

 

١٢ ميليون سال قبل از ميلاد مسيح : اختلاط ميان سنگ آهک و مايع موجود در سنگهای کناری ديواره های مناطق نفت خيز که باعث پديد آمدن بتون امروزی شده است . ( حوالی اسرائيل کنونی )
٥٦٠٠ سال قبل از ميلاد مسيح: ساخت اولين بنای بتونی .
٣٠٠٠ سال قبل از ميلاد مسيح: مصريهای باستان جهت ساخت اهرام از اختلاط سنگهای آهکی و گچی با آب به صورت بلوکهای منظم استفاده کرده اند .
٨٠٠ سال قبل از ميلاد مسيح: استفاده از ملاتهای ساختمانی در يونان باستان .
٣٠٠ سال قبل از ميلاد مسيح: استفاده بابليان و آشوريان از مخلوط مواد معدنی به صورت سنگ و آجر.
٢٩٩ سال قبل از ميلاد مسيح
٤٧٦ سال قبل از ميلاد مسيح: استفاده از جسمی شبيه خاک که تيره تر از خاک معمولی بوده و مقدار زيادی در پوزولی واقع در نزديکی خليج ناپل يافت شده بود که در بناهايی از قبيل Coliseum در رم، Basilica of Constantine در رم، و همچنين در جنوب فرانسه استفاده گرديده است که هم اکنون نيز اين بناها پابرجا و استوار می باشد.

بروز شرایط ایجاد تبخیر با شدتی بیش از kg/m2 1 در هر ساعت از سطح بتن قطعا" مشکل زا
می باشد . حتی توصیه می گردد شدت تبخیر از سطح بتن کمتر از kg/m2 5/0 در هر ساعت باشد تا خسارت هائی به بتن وارد نشود و کار بتن ریزی بهتر انجام گردد .

• اثر خسارت بار شرایط هوای گرم :
این اثرات را می توان به دو بخش بتن تازه و سخت شده تقسیم نمود . مسلما" برای داشتن بتن سخت شده مناسب باید از مرحله بتن تازه به سلامت عبور کنیم لذا از این نظر کیفیت بتن تازه از اهمیت زیادی برخوردار می باشد .
اثرات نا مطلوب هوای گرم بر بتن تازه خمیری عبارتست از :
الف ) افزایش آب مورد نیاز در طرح مخلوط
ب ) افزایش آهنگ افت اسلامپ و تمایل دست اندرکاران به افزودن آب به بتن در کارگاه بدلیل افزایش تبخیر و افزایش سرعت آبگیری سیمان و از دست دادن خواص خمیری در زمان کوتاه تر
ج ) افزایش زمان آهنگ سفت شدن بتن و کاهش زمان گیرش به نحوی که بر عملیات ریختن ، تراکم ، پرداخت سطح و نگهداری و عمل آوری بتن اثر منفی می گذارد و امکان ایجاد درز سرد را افزایش می دهد . این امر پیوستگی را در بتن ریزی مختل می کند که نیاز به آن جزو اصول بتن ریزی صحیح است .
د ) افزایش امکان ترک خوردگی خمیری بتن تازه بدلیل تبخیر زیاد و جمع شدگی بیش از حد در اثر تبخیر
هـ ) افزایش بروز مشکل در کنترل مقدار حباب هوای بتن حبابدار در بتن تازه به نحوی که عملا" حباب های هوا بزرگ شده و با می ترکند و تأثیر ثبت آنها در بتن سخت شده از بین می رود .
• اثرات نامطلوب شرایط هوای گرم بر بتن سخت شده عبارتند از :
الف ) کاهش مقاومت بتن بدلیل مصرف بیشتر آب در میان مدت و دراز مدت
ب ) کاهش مقاومت بتن بدلیل دمای بالای آن در هنگام بتن ریزی و پس از آن در میان مدت و دراز مدت علیرغم افزایش مقاومت زود هنگام بتن ( بویژه در روزهای اول – 1 تا 7 روز )
ج ) افزایش تمایل به جمع شدگی ناشی از خشک شدن و ایجاد ترکهای حرارتی
د ) کاهش دوام بتن در برابر شرایط محیطی نامناسب در حین بهره برداری مانند یخ زدن و
آب شدگی مکرر ، سایش و فرسایش تری و خشکی مکرر بتن ، حمله سولفاتها و حمله یون کلر محیط بدلیل افزایش نفوذپذیری بتن در اثر ایجاد کریستالهای درشت و کاهش مقاومت الکتریکی بتن که نقش مهمی در افزایش نفوذپذیری در برابر یون کلر و سایر عوامل مزاحم شیمیائی دارد . هم چنین کاهش دوام به دلیل ترک خوردگی
هـ ) ایجاد خوردگی سریعتر میلگردها بدلیل افزایش نفوذپذیری بتن و یا ایجاد درزهای سرد
و ) کاهش یکنواختی سطح بتن و نا زیبائی سطح بتن نمایان بویژه در مجاورت قالب ، تغییر رنگ بتن بدلیل تفاوت در آهنگ آبگیری ، منظره بدلیل درز سرد .
• عوامل تشدید کننده خسارات در هوای گرم :
برخی عوامل می توانند در هوای گرم خسارتها را تشدید نمایند . هرچند این عوامل مستقیما" در ایجاد شرایط هوای گرم بی تأثیر است اما در این شرایط می تواند باعث بحرانی تر شدن اثرات زیانبار گردد . این عوامل عبارتند از :
الف ) مصرف سیمانهائی با ریزی زیاد که موجب افزایش سرعت آبگیری سیمان و ایجاد گرمازائی بیشتر در زمان کوتاه می گردد .
ب ) مصرف سیمانهای زودگیر ( مقاومت اولیه زیاد ) مانند نوع 3 و حتی استفاده از سیمانهای
نوع 1 بویژه با وجود افزودنیهای تسریع کننده ( زودگیر کننده ) که میتواند زمان گرایش را کوتاه نماید و سرعت آبگیری و گرمازائی را بیشتر کند .
ج ) مصرف بتن های پر سیمان در رابطه با بتن های پر مقاومت و با نسبت آب به سیمان کم که سرعت آبگیری را بیشتر می کند و زمان گرایش را کوتاه و گرمازائی و سرعت آنرا افزایش می دهد . بدیهی است اغلب در شرایط محیطی نا مناسب از نسبت آب به سیمان کم استفاده نمائیم لذا باید سعی شود بتن پر سیمان مصرف ننمائیم .
د ) استفاده از مقاطع بتنی نازک با درصد میلگرد زیاد .
هـ ) بکارگیری وسایل حمل با حجم زیاد که می تواند به ایجاد درز سرد و عدم پیوستگی
منجر شود .
و ) حرکت دادن بتن در مسیر افقی یا قائم بصورت طولانی مدت ویژه ای برای بتن های کم اسلامپ ( شوت ، شوت سقوطی یا ترمی )
ز ) استفاده از پمپاژ بتن در مسیرهای طولانی ، زیرا اصطکاک بتن با لوله باعث ایجاد گرما
می شود و در شرایط هوای گرم نیز این مسیر طولانی و گرمای لوله می تواند مشکل زا باشد .
ح ) استفاده از تسمه نقاله برای حمل بتن بدلیل ایجاد سطح هواخور خیلی زیاد و تبخیر شدید و تبادل گرمائی زیاد با محیط .
ط ) ضرورت انجام و تداوم کار در شرایط هوایی خیلی گرم بدلائل اقتصادی
ی ) استفاده از سیمانهای انبساطی و یا بدون جمع شدگی که می تواند مشکل زا باشد . در این رابطه برخی مواد انبساط زا یا برخی ملات ها یا بتن ها مانند گروت میتواند عامل ایجاد خسارت بیشتر باشد .
مسلما" باید گفت اگر شرایطی بر خلاف شرایط فوق ایجاد شود مسلما" در کاهش خسارات نقش خواهد داشت . اما بر ایجاد شرایط هوای گرم تأثیری ندارد .

 

• عوامل ایجاد کننده شرایط نامناسب محیطی و هوای گرم :
همانگونه که گفته شد مصرف اجزاء بتن با دمای زیاد می تواند بتن با دمای بالاتر از حد مجاز را بوجود آورد .
همچنین بروز شرایط خاصی در محیط اطراف بتن ریزی می تواند به تبخیر شدید منجر گردد که خسارت زا می باشد .
در زیر به هر کدام از این موارد می پردازیم و نحوه پیش بینی چنین شرایطی را مطرح می نمائیم :
الف )شدت تبخیر از واحد سطح :
میزان تبخیر از سطح بتن تابع عوامل مختلفی است که از جمله می توان به دمای هوا ، دمای بتن ، رطوبت نسبی هوا ، سرعت وزش باد ، تابش آفتاب و حتی رنگ بتن و فشار هوا ( ارتفاع از سطح دریا ) اشاره نمود . در چارت ( شکل 1 ) فقط از چهار عامل اول بدلیل اهمیت و سهولت بکارگیری آنها بصورت کمی بهره برده شده است و میتوان شدت تبخیر از واحد سطح بتن را بدست آورد .
ب ) دمای تعادل بتن ساخته شده :
قبل از خسارت بتن میتوان دمای آنرا با محاسبه حدس زد . مسلما" در مراحل انتقال و ریختن بتن بعلت تبادل با محیط مجاور ، دمای بتن ممکن است تغییر نماید . بدین منظور باید برای ساخت بتن دمای کمتر از 0c 30 را در نظر گرفت تا در یک حمل معقول و منطقی با زمان کمتر از
نیم ساعت ، دمای بتن از 0c 32 تجاوز ننماید . مسلما" اگر وسیله حمل پمپ و لوله یا تسمه نقاله و یا تراک میکسر در حال چرخش
باشد باید دمای ساخت را بمراتب کمتر از 0c 28 و تا حدود کمتر از در نظر گرفت . دمای تعادل ساخت بتن بلافاصله پس از اختلاط را می توان از رابطه زیر بدست آورد .
در رابطه tc ، tg ، ts ، tp ، tw به ترتیب دمای سیمان ، سنگدانه درشت ، سنگدانه ریز ، پوزولان و دمای آب مصرفی در اختلاط بتن می باشد . ( بر حسب درجه سیلیسوس )
هم چنین wwt ,wws,wwg,ww, wp , ws , wg , wc به ترتیب جرم سیمان ، شن ، ماسه ، پوزولان ، آب مصرفی در ساخت بتن ، آب موجود در شن ، آب موجود در ماسه و آب کل موجود در بتن می باشد ( بر حسب کیلوگرم ) بدیهی است آب کل بتن برابر با مجموع آب مصرفی در ساخت بتن و آب موجود در سنگدانه می باشد و یخ احتمالی مصرفی را نیز شامل می شود . اگر از یخ نیز برای کاهش دما استفاده شود در صورت کسر رابطه فوق جمله w i (0.5ti-80) اضافه خواهد شد .
لازم به ذکر است ضرائب 0.22 در رابطه فوق ظرفیت گرمائی سیمان ، سنگدانه و پوزولان بر حسب kcal/kg می باشد و یکسان در نظر گرفته شده است در حالیکه واقعا" این ظرفیت های گرمائی در سیمانهای مختلف و سنگدانه های موجود و پوزولانهای مصرفی یکسان و مساوی 0.22 نمی باشد . بویژه در سنگدانه ها و پوزولانها ممکنست ابن ظرفیت گرمائی از 0.19 تا 0.24 تغییر نماید و حتی از این محدوده نیز بیرون باشد . ظرفیت گرمائی آب و رطوبت موجود در سنگدانه kcal/kg 1 فرض شده است . i w جرم یخ مصرفی ، i t دمای یخ مصرفی ، 0.5 ظرفیت گرمائی یخ و 80 برابر گرمای نهان ذوب یخ بر حسب kcal/kg می باشد .
مثال 1 : طرح اختلاط زیر برای بتن سازی به میزان m3 1 داده شده است . با توجه به اطلاعات موجود دمای تعادل ساخت بتن را محاسبه کنید . سیمان 400 کیلو ، شن خشک 1000 کیلو ،
آب کل 220 کیلو ، دمای سیمان 0c 35 ، دمای شن 0c 40 و رطوبت آن 6/0 درصد ، دمای ماسه 0c 30 و رطوبت آن 5/4 درصد ، دمای آب 0c 25 می باشد .
مثال 2 : اگر بخواهیم دمای بتن به 28 برسد آب باید تا چند درجه خنک شود .
مثال 3 : اگر بخواهیم با آب 0c 25 و یخ 0c 4- به این دما دست یابیم ، چند کیلو یخ لازم است ؟
مثال 4 : اگر بدون خنک کردن آب یا مصرف یخ بخواهیم به این دما برسیم دمای شن باید به چند درجه سیلیوس برسد ؟
• اثرات هوای گرم بر خواص بتن :
همانطور که قبلا" اشاره شد هوای گرم بر روی بتن تازه سخت شده اثراتی را بر جای می گذارد که نامطلوب است . در این قسمت بطور مشروح به برخی از این اثرات و خواص بتن در هوای گرم اشاره می شود .
الف ) افزایش آب مورد نیاز در طرح مخلوط :
بسته به شرایط هوا و میزان تبخیر ممکنست تا 25 کیلو ( لیتر ) آب اختلاط مورد نیاز افزایش یابد ( نسبت به حالت بدون تبخیر ) – تقریبا" هر افزایش 5 درجه سانتی گراد به حدود 3 لیتر آب نیاز دارد . وجود آب بیشتر ، جمع شدگی را افزایش می دهد و میل به ترک خوردگی بیشتر می شود .
ب ) آهنگ افت اسلامپ :
مسلما" در شرایط هوای گرم ، گرمای بدون تبخیر و یا با تبخیر می توان تأثیر مهمی بر افت اسلامپ و آهنگ آن داشته باشد . میتوان گفت تقریبا" به ازاء 0c 40 افزایش دما ( 10 تا 0c 50 ) افت اسلامپ حدود 8 سانت را شاهد خواهیم بود ( هر 0c 10 حدود 2 سانت ) . مسلما" آهنگ افت اسلامپ نیز در هوای گرم بسیار زیاد می شود تا حدی که مزاحم کار اجرائی خواهد شد و غالبا" برای مقابله با آن به افزایش آب متوسل می شوند که کار صحیحی نیست.
ج ) افزایش آهنگ سفت شدن بتن و کاهش زمان گیرش :
در یک هوای معتدل و مناسب ممکن است زمان گیرش اولیه بتن بسته به نوع سیمان و نسبت های اختلاط بین ؟ تا 3 ساعت تغییر کند . با افزایش دما این زمان کاهش می یابد و ممکنست در دمای بتن بالاتر از 0c 30 و دمای محیط بیش از 0c 35 این زمان حتی به کمتر از نصف یا ثلث کاهش یابد . مسلما" این امر مشکلات اجرائی را افزایش می دهد . در حمل محدودیت زمانی بوجود
می آورد و در ریختن و تراکم باید سرعت قابل توجهی داشته باشیم تا قبل از گیرش لایه زیرین بتوانیم لایه روئی را ریخته و متراکم کنیم . پرداخت سطح مشکل می گردد و بتن زود سفت
می شود . در اکثر موارد در چنین شرایطی درز سرد ایجاد می گردد . درز سرد در آینده می تواند محل عبور آب و سایر مواد مزاحم شیمیائی باشد .
د ) ترک خوردگی خمیر بتن تازه :
این نوع ترک خوردگی معمولا" در محیط های گرم و خشک حاصل می گردد . بدیهی است اگر بتن در محیط گرم و مرطوب قرار گیرد بعلت تبخیر کم از سطح بتن ، جمع شدگی چندانی ایجاد نخواهد شد . در رطوبت های بیش از 80 درصد عملا" مشکل ترک خوردگی بتن تازه را نخواهیم اشت . وقتی تبخیر از kg/m2/hr 1 تجاوز نماید ، وضعیت حاد و بحرانی است و عملا" باید بتن ریزی متوقف گردد و یا تمهیدات خاصی تدارک دیده شود . وقتی ترک خوردگی بیشتری اتفاق می افتد که تأخیر در گیرش و سفت شدن بتن ، مصرف سیمانهای دیرگیر ، مصرف بیش از حد کندگیر کننده ، خاکستر بادی بعنوان جایگزین سیمان و یا بتن خنک داشته باشیم . مصرف موادی که آب انداختن را کم می کند میتواند به خشکی سطح و ترک خوردگی منجر شود . از جمله این مواد
می توان از میکروسیلیس نام برد .
از بین بردن ترکهای خمیری مشکل است ولی می توان با ماله کشی مجدد توأم با فشار ترکها را تا حدودی از بین برد .
ـ ) اثرات نامطلوب بر مقاومت :
مسلما" بتنی که گرم ریخته و نگهداری شود در سنین اولیه مقاومت قابل توجهی کسب می کند اما بطور کلی در سن 28 روز به بعد مقاومت کمتری نسبت به بتن ریخته شده با دمای کم
خواهد داشت . در شکل 2 و 3 میتوانید تأثیر دمای ریختن را بر مقاومت های اولیه و دراز مدت ببینید . بویژه اگر بتن حاوی مواد پوزولانی و کندگیر نباشند ، آسیب بیشتری می بینند . اگر ترک بتن را نیز در نظر بگیریم از نظر سازه ای آسیب جدی خواهد بود .
گاه دیده می شود که در روزهای گرم نسبت مقاومت 28 روزه به 7 روزه به مقادیری کمتر از 3/1 و حتی تا 1/1 می رسد . در شرایط خاص برخی آزمونه های 28 روزه مقاومتی کمتر از آزمونه های 7 روزه را نشان می دهند که بسیار تعجب برانگیز است . دلیل این امر استفاده از بتن گرم در
قالب های گرم و داغ می باشد که گاه در زیر تابش آفتاب نیز چند ساعتی نگهداری می شوند . با استفاده از سیمانهای ریز و زودگیر کننده ، سیمان زیاد یا w/c کم این مشکل بیشتر می گردد.
برای اختصار و با توجه به ذکر اثرات نامطلوب در ابتدای این نوشتار از بیان مشروح سایر اثرات خودداری می شود .


برچسب‌ها: بتن, بتن پیشرفته

تاريخ : چهارشنبه بیستم فروردین 1393 | 16:57 | نویسنده : زهرا - دانلود رایگان
بتن و افزودنی های خاص

بتن و افزودنی های خاص

 

بتن و فولاد دو نوع مصالحی هستند که امروزه بیشتر از سایر مصالح در ساختمان انواع بناها از قبیل ساختمان پلها،ساختمان سدها، ساختمان متروها،ساختمان فرودگاه ها و ساختمان بناهای مسکونی و اداری و غیره به کار برده می شوند.و شاید به جرأت می توان گفت که بدون این دو پیشرفت جوامع بشری به شکل کنونی میسر نبود.با توجه به اهدافی که از ساخت یک بنا دنبال می شود،بتن و فولاد به تنهایی و یا به صورت مکمل کار برد پیدا می کنند. فولاد به لحاظ اینکه در شرایط به دقت کنترل شده ای تولید می شود و مشخصات و خواص آن از قبیل تعیین و با آزمایشات متعددی کنترل می شود،دارای کاربری آسانتر از بتن است. اما بتن در یک شرایط کاملا متفاوتی با توجه به پارامتر های مختلف از قبیل نوع سیمان،نوع مصالح و شرایط آب و هوایی تولید و استفاده می شود و عدم اطلاع کافی از خواص مواد تشکیل دهنده بتن و نحوه تولید و کاربرد آن می تواند ضایعات جبران ناپذیری را به دنبال داشته باشد.

با توجه به پیشرفت علم و تکنولوژی در قرن اخیر، علم شناخت انواع بتن و خواص آنها نیز توسعه قابل ملاحظه ای داشته است، به نحوی که امروزه انواع مختلف بتن با مصالح مختلف تولید و استفاده می شود و هر یک خواص و کاربری مخصوص به خود را داراست.هم اکنون انواع مختلفی از سیمانها که حاوی پوزولانها ،خاکستر بادی،سرباره کوره های آهن گدازی سولفورها پلیمرها الیافهای مختلف،و افزودنیهای متفاوتی هستند،تولید می شد. ضمن اینکه تولید انواع بتن نیز با استفاده از حرارت،بخار،اتوکلاو،تخلیه هوا،فشار هیدرولیکی،ویبره و قالب انجام می گیرد.

بتن به طور کلی محصولی است که از اختلاط آب با سیمان آبی و سنگدانه های مختلف در اثر واکنش آب با سیمان در شرایط محیطی خاصی به دست می آیدو دارای ویژگیهای خاص است.

اولین سؤالی که پیش می آید این است که چه رابطه ای بین تشکیل دهنده بتن باید وجود داشته باشد تا یک بتن خوب به دست آید و اصولا بتن خوب دارای چه شرایط و ویژگیهایی است. رابطه بین اجزاء تشکیل دهنده بتن ،در خواص فیزیکی و شیمیایی و همچنین نسبت اختلاط آنها با هم است.چه اگر مصالح یا آب و سیمانی با خواصی مناسب بتن با هم مخلوط گردند و در شرایط و محیطی مناسب به عمل آیند،یقینا بتن خوبی حاصل می شودو اصولا بتن خوب، بتنی است که دارای مقاومت فشاری دلخواه و رضایت بخشی باشد. رسیدن به یک مقاومت فشاری دلخواه و رضایت بخش بدین معناست که سایر خواص بتن مانند مقاومت کششی، وزن مخصوص، مقاومت دربرابر سایش، نفوذ ناپذیری، دوام، مقاومت دربرابر سولفاتها و ... نیز همسو با مقاومت فشاری، بهبود یافته و متناسب می شوند.

اگر چه شناخت مصالح مورد مصرف در ساخت بتن و همچنین خواص مختلف بتن کار آسانی نیست اما سعی می شود به خواص عمومی مصالح و همچنین بتن پرداخته شود.

بتن اینک با گذشت بیش از 170 سال از پیدایش سیمان پرتلند به صورت کنونی توسط یک بنّای لیدزی، دستخوش تحولات و پیشرفتهای شگرفی شده است.در دسترس بودن مصالح آن، دوام نسبتاً زیاد و نیاز به ساخت و سازهای فراوان سازه های بتنی چون ساختمان ها، پل ها، تونل ها، سدها، اسکله ها، راه ها و سایر سازه های خاص دیگر، این ماده را بسیار پر مصرف نموده است.

اینک حدود سه تا چهار دهه است که کاربرد این ماده ارزشمند در شرایط ویژه و خاص مورد توجه کاربران آن گشته است. اکنون کاملاً مشخص شده است که توجه به مقاومت تنها به عنوان یک معیار برای طرح بتن برای محیطهای مختلف و کاربریهای متفاوت نمی تواند جوابگوی مشکلاتی باشد که در درازمدت در سازه های بتنی ایجاد می گردد. چند سالی است که مسأله پایایی و دوام بتن در محیط های مختلف و به ویژه خورنده برای بتن و بتن مسلح مورد توجه خاص قرار گرفته است.مشاهده خرابی هایی با عوامل فیزیکی و شیمیایی در بتن ها در اکثر نقاط جهان و با شدتی بیشتر در کشور های در حال توسعه، افکار را به سمت طرح بتن هایی با ویژگی خاص و با دوام لازم سوق داده است. در این راستا در پاره ای از کشورها مشخصات و دستورالعمل ها واستانداردهایی نیز برای طرح بتن با عملکرد بالا تهیه شده و طراحان و مجریان در بعضی از این کشورهای پیشرفته ملزم به رعایت این دستورالعمل ها گشته اند.

در مواد تشکیل دهنده بتن نیز تحولات شگرفی حاصل شده است. استفاده از افزودنی های مختلف به عنوان ماده چهارم بتن، گسترش وسیعی یافته و در پاره ای از کشورها دیگر بتنی بدون استفاده از یک افزودنی در آن ساخته نمی شود. استفاده از سیمان های مختلف با خواص جدید و سیمان های مخلوط با مواد پوزولانی و نیز زائده های کارخانه های صنعتی روز به روز بیشتر شده و امید است که بتواند تحولی عظیم در صنعت بتن چه از نقطه نظر اقتصادی و چه از نظر دوام و نیز حفظ محیط زیست در قرن آینده بوجود آورد. در سازه های بتنی مسلح نیز جهت پرهیز از خوردگی آرماتور فولادی از مواد دیگری چون فولاد ضد زنگ و نیز مواد پلاستیکی و پلیمری (FRP) استفاده می شود که گسترش آن منوط به عملکرد آن در دراز مدت گشته است. با توجه به نیاز روز افزون به بتن های خاص که بتوانند عملکرد قابل و مناسبی در شرایط ویژه داشته باشند،سعی شده است تا در این مقاله به پاره ای از این بتن ها اشاره گردد. کاربرد مواد افزودنی به ویژه فوق روان کننده ها و نیز مواد پوزولانی به ویژه دوده سیلیس در تولید بتن با مقاومت زیاد و با عملکرد خوب مختصراً آورده می شود. بتن های خیلی روان که تحولی در اجرا پدید آورده است و نیز بتن های با نرمی بالا برای تحمل ضربه و نیروهای ناشی از زلزله نیز از مواردی است که باید به آنها اشاره نمود. کوشش های فراوان برای مبارزه با مسأله خوردگی آرماتور در بتن و راه حل ها و ارائه مواد جدید نیز در اواخر سالهای قرن بیستم پیشرفت شتابنده ای داشته است که به آنها اشاره خواهد شد.

 

افزودنی های خاص در شرایط ویژه :

برای ساخت بتن های ویژه در شرایط خاص نیاز به استفاده از افزودنی های مختلفی می باشد. پس از پیدایش مواد افزودنی حباب هواساز در سالهای 1940 کاربرد این ماده در هوای سرد و در مناطقی که دمای هوا متناوباً به زیر صفر رفته و آب بتن یخ می زند، رونق بسیار یافت. این ماده امروز یکی از پر مصرف ترین افزودنی ها در مناطق سرد نظیر شمال آمریکا و کانادا و بعضی کشورهای اروپایی است.

ساخت افزودنی های فوق روان کننده که ابتدا نوع نفتالین فرمالدئید آن در سالهای 1960 در ژاپن و سپس نوع ملامین آن بعداً در آلمان به بازار آمد شاید نقطه عطفی بود که در صنعت افزودنی ها در بتن پیش آمد. ابتدا این مواد برای کاستن آب و به دست آوردن کارایی ثابت به کار گرفته شد و چند سال بعد با پیدایش بتن های با مقاومت زیاد نقش این افزودنی اهمیت بیشتری یافت. امروزه بتن های مختلفی برای منظور ها و خواص ویژه و نیز به منظور مصرف در شرایط خاص با این مواد ساخته می شود که ازمیان آنها به ساخت بتن های با مقاومت زیاد، بتن های با دوام زیاد، بتن های با موادپزولانها زیاد (سرباره کوره های آهن گدازی و خاکستر بادی)، بتن های با کارایی بالا، بتن های با الیاف و بتن های زیر آب و ضد شسته شدن می توان اشاره نمود.

بتن های با کارآیی بسیار زیاد که چند سالی است از پیدایش آن در جهان و برای اولین بار در ژاپن نمی گذرد، تحول جدیدی در صنعت ساخت و ساز بتنی ایجاد کرده است. این بتن که نیاز به لرزاندن نداشته و خود به خود متراکم می گردد، مشکل لرزاندن در قالب های با آرماتور انبوه و محلهای مشکل برای ایجاد تراکم را حل نموده است. این بتن علیرغم کارایی بسیار زیاد خطر جدایی سنگدانه ها و خمیر بتن را نداشته و ضمن ثابت بودن کارایی و اسلامپ تامدتی طولانی می تواند بتنی با مقاومت زیاد و دوام و پایاپی مناسب ایجاد کند. در طرح اختلاط این بتن باید نسبت های خاصی را رعایت نمود. به عنوان مثال شن حدود 50 درصد حجم مواد جامد بتن را تشکیل داده و ماسه حدود 40 درصد حجم ملات انتخاب می شود. نسبت آب به مواد ریزدانه و پودری بر اساس خواص مواد ریز بین 9/0 تا 1 می باشد. با روش آزمون و خطا نسبت دقیق آب به سیمان و مقدار ماده فوق روان کننده مخصوص برای مصالح مختلف تعیین می گردد. از این بتن با استفاده از افزودنی دیگری که گرانروی بتن را می افزاید در زیر آب استفاده شده است.


برچسب‌ها: بتن, افزودنی های خاص بتن

  • دانلود فیلم
  • قالب وبلاگ
  • راهنماي سريع وبلاگ

    جهت دسترسي آسان به مطالب وبلاگ روي گزينه هاي زير کليک فرماييد

    افزودني تبديل گچ به سيمان || محصولات ما || تماس با ما ||